键控技术论文例1
2嵌入式系统
嵌入式系统以整个硬件设计为基础来实现自身功能,而一些应用程序的管理以及硬件的分配需要软件的帮助,这样便于开发程序。嵌入式操作系统经历了四个发展阶段,首先是嵌入式算法阶段,该阶段没有操作系统,主要是通过汇编语言来直接控制系统,因此整个系统相对较为单一,工作效率也相当低,用户对接较为困难。在嵌入式算法的基础上又发展了一种简单的操作系统,该系统主要以嵌入式CPU为核心,其特点是功能简单,成本较低,工作效率高,所用操作软件较为专业化,兼容性和扩展性较好,但是在处理用户界面时还不是特别容易。因此嵌入式操作系统阶段又发展成为一种嵌入式的通用操作系统,此阶段的嵌入式操作系统兼容性较好、工作效率较高、体积小、扩展性较好,而且用户界面友好。目前正在飞速发展的一个阶段是以Internet为基础,Internet的接入为嵌入式系统提供了强大的网络运作功能,这是嵌入式操作系统的需求,也是其飞速发展的一个标志。开发嵌入式系统主要是选择操作系统,选择原则包括:
(1)兼容性,操作系统是否具有兼容性在各异的平台或者各异的系统上显得尤为重要,良好的软件兼容性可以使系统在不同的平台上方便地运行,或者通过简单的微调就可以运行。
(2)实时性,嵌入式操作系统的应用广泛,因此需要其对各种异常或者各种命令随时随地做出回应。
(3)丰富的资源信息,这对提高系统开发的效率起着至关重要的作用。
(4)定制能力,硬件系统各不相同,因此要求系统的定制能力也相当的高。
(5)成本,这是任何一个开发商对产品都必须要考虑的问题。
(6)中文支持度。基于上述的因素,在选择操作系统时要慎重,而Linux操作系统是最符合上诉原则的操作系统。Linux操作系统稳定性较高,性能较好,支持各种不同的任务,可以调试结构,资源丰富,成本较低,结构多变,应用广泛。
键控技术论文例2
从广义资源的角度论,在矿区范围内的煤炭、地下水、煤层气(瓦斯)、土地以至于煤研石以及在煤层附近的其他矿床,都应该是经营这个矿区的开发对象而加以利用。
而原来对矿井瓦斯的定义是:“矿井中主要由煤层气构成的以甲烷为主的有害气体”。而在矿井水文地质类型划分中认为:“根据矿井水文地质条件、涌水量、水害情况和防治水难易程度,划为……类型”。显然,上述概念将原本为矿区资源的瓦斯和水单纯作为有害物来对待是不合适的。
煤矿绿色开采以及相应的绿色开采技术,在基本概念上是从广义资源的角度上来认识和对待煤、瓦斯、水等一切可以利用的各种资源;基本出发点是防止或尽可能减轻开采煤炭对环境和其他资源的不良影响;目标是取得最佳的经济效益和社会效益。根据煤矿中土地、地下水、瓦斯以及矸石排放等,“绿色开采技术”主要包括以下内容:①水资源保护-形成“保水开采”技术;②土地与建筑物保护-形成离层注浆、充填与条带开采技术;③瓦斯抽放-形成“煤与瓦斯共采”技术;④煤层巷道支护技术与减少矸石排放技术;⑤地下气化技术。
开采引起环境与主要安全问题的发生都与开采后造成的岩层运动有关(岩体不破坏上述问题都不会发生),因此,绿色开采的重大基础理论为:①采矿后岩层内的“节理裂隙场”分布以及离层规律; ②开采对岩层与地表移动的影响规律;③水与瓦斯在裂隙岩体中的渗流规律;④岩体应力场分布规律及岩层控制技术。
2 基于关键层理论的绿色开采技术研究与实践
采场老顶岩层“砌体梁”结构模型是针对开采过程中的矿山压力控制而提出来的。近年来,为了解决岩层控制中更为广泛的问题,提出了岩层控制的关键层理论。关键层理论提出的目的是为了研究覆岩中厚硬岩层对层状矿体开采中节理裂隙的分布及其对瓦斯抽放与突水防治以及对开采沉陷控制等的影响。因而,关键层理论将为绿色开采的研究提供理论平台。
开采后,随着关键层的破断,在该区域内地下水将形成下降漏斗。地下水位能否恢复,则决定于随着工作面的推进,上覆岩层中有否软弱岩层(事实上它是研究地下水渗漏的“关键层”)经重新压实导致裂隙闭合而形成隔水带。把地下水视为资源,必须形成保水开采技术,即开采后地表水暂时形成下降漏斗仍能恢复到原来状态的开采技术。底板突水是在采动和水压共同作用下底板破坏所致,因此,底板突水机理及防治研究应重视采动底板破坏规律的研究。岩层控制的关键层理论的原理可以用于采场底板突水治理研究中,即在采场底板隔水层中,找出起主要控制作用的岩层-隔水关键层,由此展开相应的力学分析。在采场底板突水事故统计分析的基础上,对无断层底板关键层的破断与突水机理及有断层底板关键层的破断与突水机理进行了研究,据此提出了底板突水预测预报的原理与方法,在淮北朱庄矿6313工作面底板突水危险性的预测预报中得到了应用与验证。
基于岩层控制的关键层理论提出:将保证覆岩主关键层不破断失稳作为建筑物下采煤设计的基本原则。为了保证建筑物下采煤既具有较好的经济效益,同时又确保地面建筑物不受到损害,关键在于根据具体条件下覆岩结构与关键层特征来研究确定合理的减沉开采技术及参数。确定覆岩中的关键层位置,掌握其离层与破断特征参数,是注浆减沉技术应用可行性分析、钻孔布置与注浆工艺设计及减沉效果评价的基础。从理论上来说,充填采矿是解决煤矿开采环境问题的理想途径。为了降低充填成本,基于岩层控制的关键层理论,提出了部分充填(条带充填)控制开采沉陷的思路:仅充填部分采空区,只要保证未充填采空区的宽度小于覆岩主关键层的初次破断跨距,且充填条带能保持长期稳定,就可有效控制地表沉陷。在关键层理论指导下,开展了多个矿井建筑物下条带采煤试验和巨厚火成岩下离层充填减沉试验,累计安全采出建筑物下压煤数百万t,取得了显著的经济与社会效益。目前,关键层理论正应用于多个矿井的建筑物下采煤实践。
键控技术论文例3
数控高速切削技术(high speed machining,hsm,或high speed cutting,hsc),是提高加工效率和加工质量的先进制造技术之一,相关技术的研究已成为国内外先进制造技术领域重要的研究方向。我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步落后。研究先进技术的理论和应用迫在眉睫。
1、数控高速切削加工的含义
高速切削理论由德国物理学家carl.j.salomon在上世纪三十年代初提出的。他通过大量的实验研究得出结论:在正常的切削速度范围内,切削速度如果提高,会导致切削温度上升,从而加剧了切削刀具的磨损;然而,当切削速度提高到某一定值后,只要超过这个拐点,随着切削速度提高,切削温度就不会升高,反而会下降,因此只要切削速度足够高,就可以很好的解决切削温度过高而造成刀具磨损不利于切削的问题,获得良好的加工效益。
随着制造工业的发展,这一理论逐渐被重视,并吸引了众多研究目光,在此理论基础上逐渐形成了数控高速切削技术研究领域,数控高速切削加工技术在发达国家的研究相对较早,经历了理论基础研究、应用基础研究以及应用研究和发展应用,目前已经在一些领域进入实质应用阶段。
关于高速切削加工的范畴,一般有以下几种划分方法,一种是以切削速度来看,认为切削速度超过常规切削速度5-10倍即为高速切削。也有学者以主轴的转速作为界定高速加工的标准,认为主轴转速高于8000r/min即为高速加工。还有从机床主轴设计的角度,以主轴直径和主轴转速的乘积dn定义,如果dn值达到(5~2000)×105mm.r/min,则认为是高速加工。生产实践中,加工方法不同、材料不同,高速切削速度也相应不同。一般认为车削速度达到(700~7000)m/min,铣削的速度达到(300~6000)m/min,即认为是高速切削。
另外,从生产实际考虑,高速切削加工概念不仅包含着切削过程的高速,还包含工艺过程的集成和优化,是一个可由此获得良好经济效益的高速度的切削加工,是技术和效益的统一。
高速切削技术是在机床结构及材料、机床设计、制造技术、高速主轴系统、快速进给系统、高性能cnc系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件和软件技术均得到充分发展基础之上综合而成的。因此,高速切削技术是一个复杂的系统工程,是一个随相关技术发展而不断发展的概念。
2、数控高速切削加工的优越性
由于切削速度的大幅度提高,高速切削加工技术不仅提高了切削加工的生产率,和常规切削相比还具有一些明显的优越性:第一、切削力小:在高速铣削加工中,采用小切削量、高切削速度的切削形式,使切削力比常规切削降低30%以上,尤其是主轴轴承、刀具、工件受到的径向切削力大幅度减少。既减轻刀具磨损,又有效控制了加工系统的振动,有利于提高加工精度。第二、材料切除率高:采用高速切削,切削速度和进给速度都大幅度提高,相同时间内的材料切除率也相应大大提高。从而大大提高了加工效率。第三、工件热变形小:在高速切削时,大部分的切削热来不及传给工件就被高速流出的切屑带走,因此加工表面的受热时间短,不会由于温升导致热变形,有利于提高表面精度,加工表面的物理力学性能也比普通加工方法要好。第四、加工精度高:高速切削通常进给量也比较小,使加工表面的粗糙度大大降低,同时由于切削力小于常规切削,加工系统的振动降低,加工过程更平稳,因此能获得良好的表明质量,可实现高精度、低粗糙度加工。第五、绿色环保:高速切削时,工件的加工时间缩短,能源和设备的利用率提高了,加工效率高,加工能耗低,同时由于高速切削可以实现干式切削,减少甚至不用切削液,减少污染和能耗。
3、数控高速切削技术的应用领域研究
鉴于以上所述高速切削加工的特点,使该技术在传统加工薄弱的领域有着巨大应用潜力。首先,对于薄壁类零件和细长的工件,采用高速切削,切削力显著降低,热量被切屑带走,可以很好的弥补采用传统方法时由于切削力和切削热的影响而造成其变形的问题,大大提高了加工质量。其次,由于切削抗力小,刀具磨损减缓,高锰钢、淬硬钢、奥氏体不锈钢、复合材料、耐磨铸铁等用传统方法难以加工的材料,可以研究采用数控高速切削技术来加工。另外,在汽车、模具、航天航空等制造领域, 一些整体构件需要比较大的材料切除率,由于数控高速切削的进给速度可随切削速度的提高而相应提高, 使得单位时间内的材料切除率大大提高,因而在模具制造、汽车制造、航空航天制造中,数控高速切削技术的应用将产生巨大的经济效益。第四,由于高速切削时,加工过程平稳、振动小,与常规切削相比, 高速切削可显著提高加工精度1~2级,完全可以取消后续的光整加工, 同时,采用数控高速切削技术, 能够在一台机床上实现对复杂整体结构件同时进行粗、精加工,减少了转工序中可能的定位误差, 因而也有利于提高工件的加工精度。因此, 高速切削技术在精密制造中有着广阔的应用前景。如某企业加工的铝质模具,模具型腔长达1500mm,要求尺寸精度误差±0.05mm,表面粗糙度ra0.8μm,原先的制造工艺为:粗刨—半精刨—精刨—手工铲刮—手工抛光,制造周期要60小时。采用高速铣床加工后,经过半精加工和精加工,加工周期仅需6小时,不仅效率提高,而且模具质量也大大提高。
4、实现数控高速切削加工的关键技术研究
数控高速切削加工是一个复杂的系统工程,涉及到切削机理、切削机床、刀具、切削过程监控及加工工艺等诸多相关的硬件与软件技术,数控高速切削技术的实施和发展,依赖于此系统中的各个组成要素的,这些实现数控高速切削技术离不开的关键技术,具体体现在以下方面:
1)高速切削机理:有关各种材料在高速加工条件下,切屑的形成机理,切削力、切削热的变化规律,刀具磨损规律及对加工表面质量的影响规律,对以上基础理论的实验和研究,将有利于促进高速切削工艺规范的确定和切削用量的选择,为具体零件和材料的加工工艺制定提供理论基础,属于原理技术。目前,黑色金属及难加工材料的高速切削工艺规范和切削用量的确定,是高速切削生产中的难点,也是高速切削加工领域研究的焦点。
2)高速切削机床技术模块:高速切削机床需要高速主轴系统、快速进给系统和高速cnc控制系统。高速加工要求主轴单元能够在很高的转速下工作,一般主轴转速10000 r/min以上,有的甚至高达60000-100000r/min,且保证良好动态和热态性能。其中关键部件是主轴轴承,它决定着高速主轴的寿命和负载容量,也是高速切削机床的核心部件之一,主轴结构的改进和性能的提高是高速机床的一项重要单元技术。另一项重要的单元技术是高速进给系统。随着机床主轴转速的提高,为保证刀具每齿或每转进给量不变,机床的进给速度和进给加速度也相应提高,同时空行程速度也要提高。因此,机床进给系统必须快速移动和快速准确定位,这显然对机床导轨、伺服系统、工作台结构等提出了新的更高要求,是制约高速机床技术的关键单元技术。
3)高速切削刀具技术模块:由机床、刀具和工件组成的高速切削加工工艺系统中,刀具是最活跃的因素。切削刀具是保证高速切削加工顺利进行的最关键技术之一。随着切削速度的大幅度提高,对切削刀具材料、刀具几何参数、刀体结构等都提出了不同于传统速度切削时的要求,高速切削刀具材料和刀具制造技术都发生了巨大的变化,高速切削加工时,要保证高的生产率和加工精度,更要保证安全可靠。因此,高速切削加工的刀具系统必须满足具有良好的几何精度和高的装夹重复定位精度,装夹刚度,高速运转时良好的平衡状态和安全可靠。尽可能减轻刀体质量,以减轻高速旋转时所受到的离心力,满足高速切削的安全性要求,改进刀具的夹紧方式。刀具系统的技术研究和发展是数控高速切削加工的关键任务之一。
4)数控高速切削工艺:高速切削作为一种新的切削方式,要应用于实际生产,缺乏可供参考的应用实例,更没有实用的切削用量和加工参数数据库,高速加工的工艺参数优化是当前制约其应用的关键技术之一。另外,高速切削的零件nc程序要求必须保证在整个切削过程中载荷稳定,但是现在使用的多数cnc软件中的自动编程功能都还不能满足这一的要求,需要由人工编程加以补充和优化,这在一定程度上降低了高速切削的价值,必须研究采用一种全新的编程方式,使切削数据适合高速主轴的功率特性曲线,充分发挥数控高速切削的优势。
高速切削加工技术的发展和应用有赖于以上原理方面、机床、刀具、工艺等各项关键单元技术的发展和综合。
5、高速切削技术应用方面研究状况和发展趋势
由于高速切削在提高生产效益方面具有巨大潜力,早己成为美、日、德等国竞相研究的重要技术领域。美国日本等国早在60年代初,就开始了超高速切削机理的研究。上世纪70年代,美国已经研制出最高转速达20000r/min 的高速铣床。如今,欧美等发达国家生产的不同规格的各种超高速机床已经商业化生产并进入市场,在飞机、汽车及模具制造行业实际应用。例如,在美国波音公司等飞机制造企业,已经采用数控高速切削加工技术超高速铣削铝合金、钛合金等整体薄壁结构件和波导管、挠性陀螺框架等普通方法难加工的零件。近年来,美、欧、日等国对新一代数控机床、高速加工中心、高速工具系统的研究和产业化进程进一步加快,高性能的电主轴技术及其产品的专业化生产步伐加大;高性能的刀具系统技术也进展迅速;直线电机技术应用于高速进给系统。
我国在研究和开发高速切削技术方面,许多高校和研究所作了努力和探索,包括切削机理、刀具材料、主轴轴承、等方面,也取得了相当大的成就。 然而,与国外工业发达国家相比,仍存在着较大的差距,基本上还处在实验室的研究阶段。为适应社会经济发展需要,满足航空航天、汽车、模具等各行业的制造需求,数控高速切削技术应用研究任重道远。
目前,针对高速切削技术的研究已从实验阶段转向应用阶段。在应用方面的研究包括两个层面:一是高速加工关键技术的基础理论研究,包括高速主轴单元和高速进给单元等,实现高速机床国产化。另一方面,在现有实验室实践技术基础上,进行工艺性能和工艺范围的应用研究。其中,关于高速切削工艺的研究是当前最活跃的研究领域之一,主要目标是通过试验或引进的先进设备直接进行工艺研究,努力解决关键零部件的加工工艺问题,开发和完善特种材料的高速切削工艺方法;研究开发适应高速加工的cad/cam软件系统和后处理系统,建立在新型检测技术基础上的加工状态安全监控系统。
参考文献
[1] h .舒尔茨著,高速加工发展概况,王志刚译,机械制造与自动化[j].2002(1).
[2] 孙文诚 高速切削加工模具的关键技术研究 [j].-机械制造与自动化2008(5).
键控技术论文例4
中***分号:V249.1 文献标识码:A 文章编号:1671-2064(2017)07-0053-01
在科学技术快速发展的今天,现代战争出现了突发性强、作战节奏快、作战强度大、物资消耗大、时效性要求高等一系列特点。对于现代战争的后勤保障来说,航空运输力量是这一保障的关键,而电传飞行控制系统则关系着航空运输力量能否较好完成自身关键作用的发挥。
1 电传飞行控制系统的优缺点
想要较好完成本文就电传飞行控制系统在大型运输机上应用展开的研究,我们首先就需要深入了解电传飞行控制系统的优缺点,而结合相关文献资料与自身实际经验,笔者在下文中对这一优缺点进行了详细论述。
1.1 电传飞行控制系统的优点
对于电传飞行控制系统的优点来说,可以概括为飞机稳定性与操纵性的增强、飞行品质的改善、航程的扩大、飞行安全程度的提高等几个方面。(1)飞机稳定性与操纵性的增强:主要源于电传飞行控制系统对飞机重心位置调整的实现。在传统的飞机控制系统中,重心在气动力之前的设计极为常见,这一设计主要受放宽静稳定性技术的影响,而在电传飞行控制系统应用后,飞机的重心范围能够移到正常重心范围后,这就使得飞机能够在稳定性不变的前提下提高其操纵性;(2)飞行品质的改善:主要源于电传飞行控制系统所实现的自动调参,这种自动调参能够保证飞机在不同高度、不同速度下都具备极高的飞行品质;(3)航程扩大:电传飞行控制系统的使用能够降低飞机重量,这自然使得飞机的航程大大增加;(4)飞行安全程度提高:主要来自于电传飞行控制系统所能够实现的“无忧虑操作”及其拥有的防尾旋功能,这些优点正是电传飞行控制系统得以在世界范围内实现广泛应用的原因所在[1]。
1.2 电传飞行控制系统的缺点
在了解电传飞行控制系统的优点后,我们还有必要了解其缺点,易诱发震荡、维护难度大、易受电磁脉冲干扰等三个方面是这一缺点的表现。(1)电传飞行控制系统:主要源于电传飞行控制系统中飞行员希望的响应与实际响应不同所致;(2)维护难度大:主要是由于电传飞行控制系统本身软件系统较为复杂,这种复杂使得相关设计、测试、维护等工作工作量极大;(3)易受电磁脉冲干扰:要是由于电传飞行控制系统所使用电子设备过多所致,这些缺点都使得电传飞行控制系统的更广泛应用受到了一定限制[2]。
2 电传飞行控制系统的基本功能
在了解电传飞行控制系统的优缺点后,我们还有必要了解电传飞行控制系统的基本功能,结合当下国内、国际关于电传飞行控制系统展开的各类研究,笔者将电传飞行控制系统基本功能概括为改善飞机性能、降低飞机重量、增大有效载重、扩大航程、实现空中加油等几个方面。
3 电传飞行控制系统在大型运输机中应用的关键技术
为了较好完成本文就电传飞行控制系统在大型运输机上应用展开的研究,我们还需要明晰电传飞行控制系统在大型运输机中所应用的关键技术。
(1)高可靠结构设计技术:高可靠结构设计技术是电传飞行控制系统在大型运输机中应用的关键技术之一,分布式控制、机械备份、系统级冗余配置等都属于这一技术的具体组成,而这一技术对于整个电传飞行控制系统的经济性与扩展能力提高有着较为重要的意义。(2)高容错计算机系统设计技术:高容错计算机系统设计技术是电传飞行控制系统在大型运输机中应用的关键技术之一,LRM机构、可靠的内外总线通讯、计算机余度配置是这一技术的重要组成,这一技术能够通过优化飞控计算机余度管理策略的方式提高大型运输机的飞行可靠性。(3)多操纵面协调与管理技术:多操纵面协调与管理技术同样属于大型运输机中电传飞行控制系统的关键技术,这一技术能够在大型运输机部分操纵面出现故障时予以加好应对,这就使得大型运输机的可靠性、生存性、节能性得以较好提升。(4)大型运输机飞行控制律设计技术:对于大型运输机来说,飞行控制律设计技术关系着其自身的整体飞行性能,这同样属于电传飞行控制系统的组成之一,这一技术能够实现不同大型运输机模态设置与控制律构型,这也是电传飞行控制系统在大型运输机上实现应用的前提。(5)大重量货物投放辅助稳定控制技术:这一技术直接关系着大型运输机自身职能的发挥,其本身能够实现飞机重心的调整、重量突变情况下的控制,这对于大型运输机来说存在着极为重要的意义。
4 结语
在本文就电传飞行控制系统在大型运输机上应用分析展开的研究中,笔者详细论述了电传飞行控制系统在大型运输机中应用的关键技术,结合这一内容我们不难发现,电传飞行控制系统的很多关键技术与大型运输机存在着较高的契合度,由此可见电传飞行控制系统在大型运输机领域中应用具备的较高价值。
键控技术论文例5
二十世纪产生的相对论、量子论和控制论并称为三项科学***,是人类进一步认识客观世界的重要理论。随着现代科学技术及计算机技术的不断进步,控制理论与控制工程不仅涉及到工业、农业、交通运输业等传统领域,而且逐步渗透到生物、信息、通讯等新兴领域。因此,把控制理论与控制工程有效的应用到更多的问题解决中,已成为相关科研人员进行问题解决的关键手段。
1 控制理论与控制工程的发展
1.1 控制理论的产生
控制理论作为一门应用性很强的学科,其产生可以追溯到十八世纪中叶英国的第一次技术***中。瓦特于1765年发明蒸汽机后,把离心式飞锤调速器原理应用到蒸汽机转速控制中,标志着以蒸汽为原动力的机械化时代到来。之后工程界把控制理论应用于调速系统稳定性问题的研究上来。
随着通讯和技术处理技术的快速发展,电气工程师们研究出了以实验为基础的频域响应分析法,美国贝尔实验室工程师奈奎斯特于1932年发表的《反馈放大器稳定性》一文中,提出系统稳定性奈奎斯特判据,后来被推广到条件稳定性和开环不稳定研究上。控制创始人维纳在总结前人的成果基础上,写成《控制论――或关于在动物和机器中控制和通讯的科学》一文,奠定了控制理论基础。
1.2 控制理论与控制工程的发展
第一阶段:二十世纪40~60年代,即古典控制理论时期。这一时期,主要是对单输入单输出问题进行解决,而解决这些问题所运用到的方法主要有传递函数、根轨迹、频率特性等,且大多数研究的是是线性定常系统,而对非线性系统研究使用的相平面法变量不超过两个,该控制理论能有效的解决生产过程中的单输入单输出问题。其代表有1945年伯德提出的伯德***法等。
第二阶段:二十世纪60~70年代,即现代控制理论时期。这一时期随着空间技术的发展,控制理论逐渐向高性能方向发展,主要是对相对复杂问题进行解决。充分使用数学计算机进行分析设计和实时控制,这一过程中出现的非线性、时变、多输出多输入等相对比较复杂的系统控制问题已远远超出了古典控制理论的范围,为此提出了最优控制方法,随后又产生自适应控制系统,使现代控制理论提出并不断完善。其代表有1961年庞特里亚金的极大值原理。
第三阶段:二十世纪70年代至今,主要是大系统理论和智能控制时期。大系统理论主要是对控制理论广度的拓展,利用控制和信息的观点,对各种大系统的结构、设计、方案等技术理论进行研究;智能化控制主要是对控制理论深度的开掘,对人类智能活动和信息传递控制规律等进行研究,并研制出仿人智能的工程控制和信息处理系统,其代表就是智能机器人的发明。
2 控制理论与控制工程的应用
2.1 控制理论不只是一门学科,是哲学,是世界观,是方***
二十一世纪比较流行的是3C技术,即计算机技术、通信技术和控制技术,且计算机技术是中心,通信技术是关键,控制技术是根本,所以控制学科已发展成为一门基础学科。而且控制理论和控制工程中的系统结构、系统稳定、系统智能、系统反馈等理论思想除了在自然科学各领域有广泛应用外,还渗透到人文科学中。所以有专家认为控制理论已不单纯只是一门学科,而是发展成为哲学、世界观和方***。
控制理论和控制工程具有基本概念的普适性和独特性等特点,且在其应用中的关键与核心主要是两个概念:
第一,系统概念。随着社会经济的发展,系统问题已成为社会关注的焦点和热点,特别是社会中的复杂系统及科学课题,这是控制理论发展和完善的必然趋势,控制理论和控制工程除了要进行结构和性质研究外,更要对系统运行进行调控。
第二,反馈概念。这一概念是控制理论的核心,是区别于其他学科及理论应用的根本。反馈可以让控制系统尽可能的具备人类智能的特点,可以对实际应用过程中的数据、结构等不确定因素进行监控和调整,提高工作效率。
2.2 “一种控制,两种研究方法,三种系统”的应用
⑴“一种控制”,即最优控制。最优控制是控制理论和控制工程应用的核心内容,主要就是在满足一定的约束条件基础上,选择最优控制策略,使性能指标极大化或者极小化,让系统控制通过基本条件及综合方法(就是受控的运动过程或动力学系统)取得最优化效果。
⑵“两种研究方法”,即PDI控制器和Kalman滤波器。PDI控制器和Kalman滤波器作为控制理论与控制工程的典型研究方法,在实际系统中得到广泛的应用。这两种方法不仅可以应用于线性模型,而且还可以应用到很多非线性系统的证明中。
⑶“三种系统”,即开环控制系统、闭环控制系统和符合控制系统。根据不同的具体应用使用不同的系统。比如说水槽内水位的控制和电加热器中的温度控制,主要利用的是自动控制和闭环系统。
键控技术论文例6
1、数控高速切削加工的含义
高速切削理论由德国物理学家Carl.J.Salomon在上世纪三十年代初提出的。他通过大量的实验研究得出结论:在正常的切削速度范围内,切削速度如果提高,会导致切削温度上升,从而加剧了切削刀具的磨损;然而,当切削速度提高到某一定值后,只要超过这个拐点,随着切削速度提高,切削温度就不会升高,反而会下降,因此只要切削速度足够高,就可以很好的解决切削温度过高而造成刀具磨损不利于切削的问题,获得良好的加工效益。
随着制造工业的发展,这一理论逐渐被重视,并吸引了众多研究目光,在此理论基础上逐渐形成了数控高速切削技术研究领域,数控高速切削加工技术在发达国家的研究相对较早,经历了理论基础研究、应用基础研究以及应用研究和发展应用,目前已经在一些领域进入实质应用阶段。
关于高速切削加工的范畴,一般有以下几种划分方法,一种是以切削速度来看,认为切削速度超过常规切削速度5-10倍即为高速切削。也有学者以主轴的转速作为界定高速加工的标准,认为主轴转速高于8000r/min即为高速加工。还有从机床主轴设计的角度,以主轴直径和主轴转速的乘积DN定义,如果DN值达到(5~2000)×105mm.r/min,则认为是高速加工。生产实践中,加工方法不同、材料不同,高速切削速度也相应不同。一般认为车削速度达到(700~7000)m/min,铣削的速度达到(300~6000)m/min,即认为是高速切削。
另外,从生产实际考虑,高速切削加工概念不仅包含着切削过程的高速,还包含工艺过程的集成和优化,是一个可由此获得良好经济效益的高速度的切削加工,是技术和效益的统一。
高速切削技术是在机床结构及材料、机床设计、制造技术、高速主轴系统、快速进给系统、高性能CNC系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件和软件技术均得到充分发展基础之上综合而成的。因此,高速切削技术是一个复杂的系统工程,是一个随相关技术发展而不断发展的概念。
2、数控高速切削加工的优越性
由于切削速度的大幅度提高,高速切削加工技术不仅提高了切削加工的生产率,和常规切削相比还具有一些明显的优越性:第一、切削力小:在高速铣削加工中,采用小切削量、高切削速度的切削形式,使切削力比常规切削降低30%以上,尤其是主轴轴承、刀具、工件受到的径向切削力大幅度减少。既减轻刀具磨损,又有效控制了加工系统的振动,有利于提高加工精度。第二、材料切除率高:采用高速切削,切削速度和进给速度都大幅度提高,相同时间内的材料切除率也相应大大提高。从而大大提高了加工效率。第三、工件热变形小:在高速切削时,大部分的切削热来不及传给工件就被高速流出的切屑带走,因此加工表面的受热时间短,不会由于温升导致热变形,有利于提高表面精度,加工表面的物理力学性能也比普通加工方法要好。第四、加工精度高:高速切削通常进给量也比较小,使加工表面的粗糙度大大降低,同时由于切削力小于常规切削,加工系统的振动降低,加工过程更平稳,因此能获得良好的表明质量,可实现高精度、低粗糙度加工。第五、绿色环保:高速切削时,工件的加工时间缩短,能源和设备的利用率提高了,加工效率高,加工能耗低,同时由于高速切削可以实现干式切削,减少甚至不用切削液,减少污染和能耗。
3、数控高速切削技术的应用领域研究
鉴于以上所述高速切削加工的特点,使该技术在传统加工薄弱的领域有着巨大应用潜力。首先,对于薄壁类零件和细长的工件,采用高速切削,切削力显着降低,热量被切屑带走,可以很好的弥补采用传统方法时由于切削力和切削热的影响而造成其变形的问题,大大提高了加工质量。其次,由于切削抗力小,刀具磨损减缓,高锰钢、淬硬钢、奥氏体不锈钢、复合材料、耐磨铸铁等用传统方法难以加工的材料,可以研究采用数控高速切削技术来加工。另外,在汽车、模具、航天航空等制造领域, 一些整体构件需要比较大的材料切除率,由于数控高速切削的进给速度可随切削速度的提高而相应提高, 使得单位时间内的材料切除率大大提高,因而在模具制造、汽车制造、航空航天制造中,数控高速切削技术的应用将产生巨大的经济效益。第四,由于高速切削时,加工过程平稳、振动小,与常规切削相比, 高速切削可显着提高加工精度1~2级,完全可以取消后续的光整加工, 同时,采用数控高速切削技术, 能够在一台机床上实现对复杂整体结构件同时进行粗、精加工,减少了转工序中可能的定位误差, 因而也有利于提高工件的加工精度。因此, 高速切削技术在精密制造中有着广阔的应用前景。如某企业加工的铝质模具,模具型腔长达1500mm,要求尺寸精度误差±0.05mm,表面粗糙度Ra0.8μm,原先的制造工艺为:粗刨—半精刨—精刨—手工铲刮—手工抛光,制造周期要60小时。采用高速铣床加工后,经过半精加工和精加工,加工周期仅需6小时,不仅效率提高,而且模具质量也大大提高。
4、实现数控高速切削加工的关键技术研究
数控高速切削加工是一个复杂的系统工程,涉及到切削机理、切削机床、刀具、切削过程监控及加工工艺等诸多相关的硬件与软件技术,数控高速切削技术的实施和发展,依赖于此系统中的各个组成要素的,这些实现数控高速切削技术离不开的关键技术,具体体现在以下方面:
1)高速切削机理:有关各种材料在高速加工条件下,切屑的形成机理,切削力、切削热的变化规律,刀具磨损规律及对加工表面质量的影响规律,对以上基础理论的实验和研究,将有利于促进高速切削工艺规范的确定和切削用量的选择,为具体零件和材料的加工工艺制定提供理论基础,属于原理技术。目前,黑色金属及难加工材料的高速切削工艺规范和切削用量的确定,是高速切削生产中的难点,也是高速切削加工领域研究的焦点。
2)高速切削机床技术模块:高速切削机床需要高速主轴系统、快速进给系统和高速CNC控制系统。高速加工要求主轴单元能够在很高的转速下工作,一般主轴转速10000 r/min以上,有的甚至高达60000-100000r/min,且保证良好动态和热态性能。其中关键 部件是主轴轴承,它决定着高速主轴的寿命和负载容量,也是高速切削机床的核心部件之一,主轴结构的改进和性能的提高是高速机床的一项重要单元技术。另一项重要的单元技术是高速进给系统。随着机床主轴转速的提高,为保证刀具每齿或每转进给量不变,机床的进给速度和进给加速度也相应提高,同时空行程速度也要提高。因此,机床进给系统必须快速移动和快速准确定位,这显然对机床导轨、伺服系统、工作台结构等提出了新的更高要求,是制约高速机床技术的关键单元技术。
3)高速切削刀具技术模块:由机床、刀具和工件组成的高速切削加工工艺系统中,刀具是最活跃的因素。切削刀具是保证高速切削加工顺利进行的最关键技术之一。随着切削速度的大幅度提高,对切削刀具材料、刀具几何参数、刀体结构等都提出了不同于传统速度切削时的要求,高速切削刀具材料和刀具制造技术都发生了巨大的变化,高速切削加工时,要保证高的生产率和加工精度,更要保证安全可靠。因此,高速切削加工的刀具系统必须满足具有良好的几何精度和高的装夹重复定位精度,装夹刚度,高速运转时良好的平衡状态和安全可靠。尽可能减轻刀体质量,以减轻高速旋转时所受到的离心力,满足高速切削的安全性要求,改进刀具的夹紧方式。刀具系统的技术研究和发展是数控高速切削加工的关键任务之一。
4)数控高速切削工艺:高速切削作为一种新的切削方式,要应用于实际生产,缺乏可供参考的应用实例,更没有实用的切削用量和加工参数数据库,高速加工的工艺参数优化是当前制约其应用的关键技术之一。另外,高速切削的零件NC程序要求必须保证在整个切削过程中载荷稳定,但是现在使用的多数CNC软件中的自动编程功能都还不能满足这一的要求,需要由人工编程加以补充和优化,这在一定程度上降低了高速切削的价值,必须研究采用一种全新的编程方式,使切削数据适合高速主轴的功率特性曲线,充分发挥数控高速切削的优势。
高速切削加工技术的发展和应用有赖于以上原理方面、机床、刀具、工艺等各项关键单元技术的发展和综合。
5、高速切削技术应用方面研究状况和发展趋势
由于高速切削在提高生产效益方面具有巨大潜力,早己成为美、日、德等国竞相研究的重要技术领域。美国日本等国早在60年代初,就开始了超高速切削机理的研究。上世纪70年代,美国已经研制出最高转速达20000r/min 的高速铣床。如今,欧美等发达国家生产的不同规格的各种超高速机床已经商业化生产并进入市场,在飞机、汽车及模具制造行业实际应用。例如,在美国波音公司等飞机制造企业,已经采用数控高速切削加工技术超高速铣削铝合金、钛合金等整体薄壁结构件和波导管、挠性陀螺框架等普通方法难加工的零件。近年来,美、欧、日等国对新一代数控机床、高速加工中心、高速工具系统的研究和产业化进程进一步加快,高性能的电主轴技术及其产品的专业化生产步伐加大;高性能的刀具系统技术也进展迅速;直线电机技术应用于高速进给系统。
我国在研究和开发高速切削技术方面,许多高校和研究所作了努力和探索,包括切削机理、刀具材料、主轴轴承、等方面,也取得了相当大的成就。 然而,与国外工业发达国家相比,仍存在着较大的差距,基本上还处在实验室的研究阶段。为适应社会经济发展需要,满足航空航天、汽车、模具等各行业的制造需求,数控高速切削技术应用研究任重道远。
目前,针对高速切削技术的研究已从实验阶段转向应用阶段。在应用方面的研究包括两个层面:一是高速加工关键技术的基础理论研究,包括高速主轴单元和高速进给单元等,实现高速机床国产化。另一方面,在现有实验室实践技术基础上,进行工艺性能和工艺范围的应用研究。其中,关于高速切削工艺的研究是当前最活跃的研究领域之一,主要目标是通过试验或引进的先进设备直接进行工艺研究,努力解决关键零部件的加工工艺问题,开发和完善特种材料的高速切削工艺方法;研究开发适应高速加工的CAD/CAM软件系统和后处理系统,建立在新型检测技术基础上的加工状态安全监控系统。
参考文献
[1] H .舒尔茨着,高速加工发展概况,王志刚译,机械制造与自动化[J].2002(1).
孙文诚 高速切削加工模具的关键技术研究 [J].-机械制造与自动化2008(5).
键控技术论文例7
中***分类号 S572 文献标识码 A 文章编号 1007-7731(2013)23-84-02
在进行卷烟品牌均质化生产过程中,统计技术在烟草加工企业中应用越来越广,越来越深入[1]。工序能力反映了工序能够稳定地生产出产品的能力,是工序保证质量的能力。
SPC(statistical process control)称为统计过程控制,它以概率统计学为基础,用科学的方法分析数据得出结论,作为过程控制的依据,具有预防性、科学性等特点,适合对卷烟加工过程质量进行控制、对设备的运行进行监控和对异常因素进行判断和预警,是企业提高品质管理水平的有效方法。SPC的核心工具是控制***,主要通过各种控制***,利用数理统计原理,通过检测数据的收集和分析,利用其分析结果来发现潜在患、解决苗头性问题,事前预防,从而有效控制生产过程,以达到质量分析、质量控制和质量改进的目的,不断改进品质。
1 检测方法
以PASSIM卷烟机为试点,对控制前后卷烟重量指标参考“卷制技术要求”中的方法进行测试[2],测试结果见表1。
分析与应用
2.1 数据分析 根据抽取样品测试数据,诊断过程是否处于统计控制状态。如果此时经数据计算,样品卷烟重量CPK值达到要求,则用这些数据进行控制***制作,如果达不到,再重新调整设备,重新取样检测。基于机台应用环境的实际,选用了均值―极差控制***,制作分析用控制***如***1所示。
当过程进入控制状态,过程能力指数达到要求,就延长控制限作为控制用控制***,进入过程控制阶段,对过程采集的数据进行直观描点,若有点超出控制限或点的排列有缺陷,分析原因,采取措施,保持过程的统计控制状态。
2.2 生产应用 在本方法应用过程中,结合生产实际情况,依据过程能力指数的相关因素,研究每个因素的关键点,通过导入SPC控制技术,并使之简易化,实施了“平行导入、齐步推进”(偏移量、标准偏差改进齐头并进)的办法:一边针对操作工SPC技术应用尚有困难的实际情况,制定出直观的上下限控制值,由操作工根据关键质量特性值偏移量进行实时调整;一边进行设备标准化维修、工艺革新等,降低关键质量特性值的离散程度。“平行导入”办法的实施,一方面根据技术层次、岗位职责的不同明确了各自的努力方向和控制目标,另一方面为提高过程能力指数而双向努力。
3 结论与讨论
自SPC统计技术应用以来,先后采用了均值控制***和极差控制***对生产过程关键工序进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,寻找在控制过程中质量的异常波动,对生产过程的异常趋势提出预警,正确引导生产、管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到控制和提高质量的目的。同时为设备改进、技术参数调整提供了依据,指导设备性能点检工作系统而有针对性的开展。
参考文献
键控技术论文例8
一、专业项目论文的工作观
技师技能考核或鉴定首先应注重的是工作者专业素质――岗位工作能力水平的评价。写作和提交论文是申报鉴定者应对技能考核鉴定的准备过程,同时是个人技能水平的展示过程。
技术工人的专业工作目的一般要求是:保证生产质量、提高生产率、降低物质消耗――有效益价值核算或向好性预期。凭借论文关于专业工作项目立论确定、技术路线解析、工艺方法选择、调试过程记录等的描述,充分显示工作者的能力水平――专业规范把握、主流技术运用、工艺方法适当、工序工步明晰。
技师论文应该强调较高级工艺性内容,应该是工作技艺和业绩展示、以专业文献范式表述的文章,并不一定要用某效益指标来显示工作价值。如工艺改进型课题论文,突出的是专业技巧水平;又如新技术应用型课题论文,突出的是对工程新技术或复杂工艺的理解和驾驭能力。
1.强调论文项目的工艺性价值。技能,应理解为专业工作的技能工艺能力。也许是简称,总易误认为技能偏指技术能力,而忽视工艺能力。技术一般是指工业过程的方***,即一般是可行性确定后在标准化设计前提下选材、加工手段、加工流程以尽可能的高效率获得目标产品的方法。而工艺,可以理解为加工的“艺术”,强调工作过程中获得目标产品的技巧性、保障性和完美性。技术工艺能力,可以理解为技术与工艺互渗而形成的知识型、技巧型、成熟型的生产力。
较高级的专业技能型人员的工作,应能体现技术工艺引人入胜的技巧性,工作项目论文也理所当然要求显示出工艺性价值――论文应显示出写作者关于工作项目的基本技术理解能力和工艺质量层次。基本技术能力包括专业理论的引用或引证,工艺质量则涵括改进能力、工作技巧、专业理论与实际的连接和补足能力、安全防护构思能力、提高工作对象商品化的能力。工艺质量直接决定了目标产品的实用性、适用性和市场性。
2.注重专业性表述的标准化概念。技师的基本技术理论理解力是其工作的重要基础之一,但其工作的方式、目标往往约束了专业理论的扩充速度和应用空间。许多长期在特殊电气工程岗位工作、工艺经验丰富的技艺型人员理论水平并不高,但他们的本职工作很出色,工作质量的工艺价值突现。一般认为长期的专职工作经验中积累着较高的专业工艺悟性。应该看到,高专业工艺性主要表现为相对行业标准、生产规范有很强的理解力,对生产流程有很强的连接、补足、改进的能力。正是高的专业悟性使得技艺型人员与技术设计人员的工作配合相得益彰。
3.把握过程分析的理论深度。一些技师工作项目论文中,用大量篇幅阐述理论的依据――数理公式推导过程或教科书式论说,然后绘出基本原理***,最后给出相当肯定的可行性结论。必须注意,这种论文往往是有缺陷的――项目的实施有效性没有表达―作者的操作工艺技能水平得不到显示。缺少相关工程经验公式或者经验系数(理论公式受客观实际过程条件的约束),易使得项目实施性这一关键工艺环节受到鉴定评价者质疑。这类论文的缺陷在论文大辩的有限时间里难以弥补。
4.妥当运用“技术进步手段”、“技术创新理念”、“精湛工艺过程”。机电工程岗位特征――专业智能成分较多,技巧思维保持,非连续性非周期性的操作。视下述工作能力为工艺能力;把握专业标准和规范的运用方法、流畅的专业语言(术语,编程,工程***,解析***表等)表述、撰适用的工程文档、规划工作技巧和效率。
技术进步:在产业规范约束下,采用现代的、主流的专业技术成果。
技术工艺创新:在产业规范约束下的工作能够在去除隐患、操作便捷、安全可靠、形式优化、节能提效、减污去噪、降低维护成本、智能化诊断运行等某些方面有显明的特色成果。
基本完备和适配的资料:是指可以作为施工提纲或设备的档案基本资料。
二、电学原理在工程运用中的本征性理解
机电技术中的电工技术是关于电能量分配和智能控制的技术,应用电工技术的基础原理是欧姆定律和麦克斯韦电磁方程组。
1.本征性理解。客观导电材料上的电量分析应划分为以电压(电动势能信息)为主量的“信息变换及传递系统”和以电流为主量的“能量传输电路”。控制信息传递系统的第一要素是“保证信息的准确”,控制系统传递信息不一定依赖固形材料(例如可通过空间电磁场感应传递)。
使用电动机为电能耗用终端的设备继电器线路形式控制电路主要形成运动控制“逻辑、时间、顺序”机制,自保、互锁、延时、中继等都是形成控制信息的电路。
采用集成运放器为核心的信号电压调节器主要解决比例(信号放大)、微分(信号即时变化率)、积分(信号的时间积累效应),而整流、检波、限幅、隔离、跟随、调零、保护等都是附加电路。
电能量传输的第一要素是电路成为回路,依赖有形的导电材料,再者就是能量规模(大小)和传输时间可控。因此,控制电路的关键功能是信息“变换(如电压放大器)”和“调节”。
主电路的关键功能是能量的“被控”和“驱动”,而反馈电路则是对于完成基本运转功能的、由基本控制器和驱动器(主电路)组成的开环系统输出量检测并形成修正信号的“智能化”部件。
现时的机电“主流技术”指由集成PID运算器件、逻辑运算器件(CPU)及大容量数据存储器件为核心的控制器运用技术、由可高频全控大功率无触点开关元件为核心的驱动器运用技术及由新型传感器为核心的传感信号接收变换电路技术。
2.机电能量转换技术离不开磁材料技术,也离不开磁路分析技术;传统的磁路材料由于磁传导敏感于温度和介质成分,其电气特性检定比较困难。但是近些年来,新型合成磁性材料技术迅猛发展,其运用空间(特别是在机电技术领域)急速扩展。
再者,材料科学技术和信息技术是工业技术发展的双引擎,感知设备运动状态和形成系统信息的传感器技术是智能系统的前端。
从对于控制方式本质的理解判断机电控制技术的发展方向:以一个四端电路(网络)为例,若以改变激励能够实现相应响应,则控制方式可分为:a.电流控制电流(控制机制参数体现为电流放大系数),b.电压控制电流(控制机制参数体现为转移电导(跨导)),c.电压控制电压(控制机制参数体现为电压放大倍数),d.电流控制电压(控制机制参数体现为转移电阻(跨阻)),实现电能利用的机电设备的电路多以电流为被控量,所以上述a,b两种控制方式是驱动器电路,c是信息处理电路,d不是机电设备电路优选形式(能量控制信号)。
上述a、b方式分别代表着两个时代的电能传输电路(主电路、驱动器)形式。
a方式中,电流控制电流的中心技术是:实现小电流控制大电流、一路电流控制多路电流。代表器件有三极管和继电器。
三极管,响应速度高,无动作触点,但控制电路与被控电路有公共支路,控制量与被控量的高次谐波相互影响或制约,而且可承受功率在瓦特级,一般不符合机电设备功率规模要求。
继电器(接触器),以电-磁-力形式驱动开关触点动作,实现电流的小控大和一控多。但触点动作时间不准、电弧现象、线圈断电反电动势高并形成高频干扰源、体积大等固有弱点,长期以来被视为“非理想器件”。
b方式是经典控制技术体系中理想的控制方式――信息控制能量。
上世纪后半期,业界使用大功率半控型电子器件晶闸管加之PWM技术的移相触发器实现有缺陷的“信息控制能量”方式于机电设备能量控制――主要是直流电动机的荷载调速。
上世纪末期大功率全控型电子器件IGBT(一种增强型绝缘栅场效应管器件)的商品化普及,机电设备用全控型的信息控制能量方式成为现实,例如在结构简单价格低廉的交流电动机实现宽范围荷载的变频调速。
3.电气主流技术发展的瞻望。机电设备机械构件的技术进步程度受制于材料技术发展及其成果的商品化程度。通用机电电工技术范畴的技术开发重点有:
电力电子技术:利用电力电子器件实现工业规模电能变换的技术,是建立在电子学、电工原理和自动控制三大学科上的新兴学科成果。器件以半导体为基本材料,根据器件的特点和电能转换的要求,开发电能转换电路,包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及电路。
电动机技术:强磁材料与低温环境技术。
虚拟现实技术:软件型传感系统分析与仪表。
机电液智能控制技术:机械、液压、电子融合控制技术使得机器的效率、性能、品质、可靠性等大大提升,如大型工程机械设备、深海或隧道的巨力液压控制系统。
微机电系统技术:常规电气系统元器件微型化组件化甚至实现“叠层组件―集成化”,即把微型化的敏感元器件、微处理器、执行器、各种机械构件、电动机、能源、光学系统等都集成于一个极小的几何空间内,并且能像集成电路一样大批量、廉价地生产。
电致流体相变技术:电场作用下电流变液(ERF,electrorheological fluid)可在“固”―“液”两相之间转换,转换过程可控而且可逆,转换时间为ms级,利用其电控力学行为,可以预期得到较之传统力学元件更为理想的(机―电能量转换控制的)响应指标。
磁致流体相变技术:磁流变液是由高磁导率、低磁滞性的微小软磁性颗粒和非导磁性液体混合而成的悬浮体。在零磁场条件下呈现出低黏度的牛顿流体特性;而在强磁场作用下,则呈现出高黏度、低流动性。磁流变液在磁场作用下的流变是瞬间的、可逆的,而且其流变后的剪切屈服强度与磁场强度具有稳定的对应关系。
硅胶导电与绝缘的智能化控制技术;作为可以在电磁场发挥“柔性”功能的新型器件必将影响机电设备电路构造技术。导电硅胶是具备导电性能的硅胶制品,用于一些电子硅胶产品上发挥开关接通的作用,现时应用于一些电子设备、家用设备、办公设备中,比如导电硅胶按键、电线连接管、影印机滚轴、电缆插头、连接器衬垫等。
三、要强调通用电学知识与电工新技术运用衔接的工艺能力
机电设备技术标准(国家标准、国际电工委员会文件、超级公司企业标准)的意志和执行能力。标准化是机电设备可靠性的保障。国家标准中对机床的控制方式、接地方式、抗干扰、容错、机械连锁、危险部件防护等,作了较完善规定,有效保障了机床的安全可靠运转。经验证明,符合标准的机床,故障率较低,反之故障率则高,可靠的保护措施是防止器件和装置损坏的重要方面。
当前的国家职业技能鉴定技师和高级技师考评体系强调了标准化水平是素质和技术能力的体现。如技术资料规范化编整能力、微机控制应用程序解析能力、逆向工程能力(逆向于在确定材料条件下设计制造的路径对产品拆解―解析技术工艺特征,提交改进或改性方案,以期获得结构或功能更优化的产品)、工程数学与物理运动现实的映射解释能力。
四、提高论文的精致程度和新技术含量的着眼点
键控技术论文例9
我国西部大开发战略的实施使世界上有实力的压实设备公司看好国内大市场,给国内同行带来了机遇和挑战。免费论文,机电液一体化。。美国英格索兰公司在无锡建厂、美国卡特被勒公司在徐州建厂,3-5年内国外产品或独资公司生产的压实机械产品会占 30%以上,外资企业不仅引人硬件技术,还引进了软件技术和管理技术。众所周知,高科技带来高利润,机械产品的升级换代是市场选择企业的根本。免费论文,机电液一体化。。
1国外压路机机电液一体化技术的发展
1.1德国 BOMAG公司的自动压实控制系统
新型智能可变振幅的Variomatic振动压路机以两个相对旋转的偏心轴来振动压实轮,双轴布置使振动力的大小和方向可根据轮子在被压物料上振动加速度的变化,通过液压系统修正两轴之间的角度,用电子控制自动地完成从垂直到水平方向的无级变化,而装在轮上的加速度表则连续不断地反映物料硬度随压实进程的变化。免费论文,机电液一体化。。从加速度表上测得的数据被输送到压路机上的计算机里,并可存人软、硬盘中,计算机可将这些数据与预先存储在机内的数据(大量压路机在长期改进过程中累积起来的经验数据)相比较。当结果达到预定值时计算机发出指令,通过改变两根轴的相对角度来改变振动方向和有效振幅,对压实力进行优化,既简化司机操作又改善压实均匀度。
1.2适压 Superpaye超级路面的压买系统
根据 Superpaye超级路面技术规定要使用粗颗粒骨料和低含量沥青,在减少环境污染的同时增强路面承载力,工艺要求为躲过“温度敏感区”而进行高温压实。 Hamm公司的IQ2系统不但记录和显示压实状况,还可自动调校振频、振幅和行驶速度,在最短时间内达到最理想的压实效果。
1.3用电子技术实现关键参数的实时监控
在关键部位设置传感器对压路机上的发动机燃油。冷却、润滑、充电系统及行走、振动。转向系统等的温度、压力、流量诸参数进行实时监控;借助看门狗电路和电脑监控分析进行异常报警;利用微电脑控制器对整机上的开关、继电器、电磁阀进行检测、诊断并分析出故障代码,维修人员利用监控器读取故障码,便于快速排除故障。
1.4以机电液一体化技术为界面的新功能开发
国外广泛利用该技术建立了自动驾驶作业系统;德国宝马公司推出自动滑转控制系统,压路机可爬68%的陡坡;通过操作显示灯、提示灯和电器开关互锁来防止误操作;通过操作座椅上的开关在压路机行驶过程中进行牵引与行驶液压回路的转换。
2国内压路机机电液一体化技术现状
国内压路机厂家在这方面也有了一定的进展,如湖南江麓机械厂开发的W1102DZ振动压路机具有自动驾驶作业系统,许多压路机也都设置了声光报警系统。尽管对关键参数实施了监控,而且控制方式独特、自成体系,安装维护简单直观,抗干扰能力强,但由于线束多,各功能单元之间的复合控制难以实现,传感器资源不能充分利用。随着监控信息量的加大,警报灯、仪表布置困难,其它自动控制的功能扩充困难。
3主要技术问题和解决方法
国产压路机存在着可靠性、耐用度差,监测手段落后的问题,作业质量受人为因素影响大,压实控制技术智能化程度低,操作舒适性差,当前筑路机械技术难点集中在控制与操纵系统的改进上。
我们可以通过引人具有良好控制性能和信息处理能力的电子技术、传感器技术和电液传感技术,从机械和液压两个方面来解决其控制问题。在传统的负荷传感和极限功率调节系统中引进电子传感元件和执行回路,使液压系统的调节品质和功能得到显著改善。即把系统的逻辑功能由电子装置承担;把能量转换、功率流切换和主系统过载保护(安全阀)由液压、气动装置承担;通过引人比例阀。PLC可编程控制和数据总线技术以及采用廉价而可靠的高速电磁阔而构成低成本的闭环控制系统;同时依靠电子元件反馈相应的参数值,建立完善的***状态监测和故障诊断分析功能。免费论文,机电液一体化。。
4目前应抓的工作
机电液一体化技术的推广应用首先要解决观念更新问题,过分强调低成本竞争会把企业带人死胡同。诚然机械产品元件越少其可靠性会越高,但这种可靠性丧失了产品的多功能开发。国外正是看到了故障的必然性才会借助机电液一体化技术来防止故障、迅速发现并解决故障,同时也正是由于电子元件质优价廉,才使该项技术得到了最充分的利用和开发。免费论文,机电液一体化。。
其次要合理利用该技术则离不了引进、吸收和开发。如英格索兰、卡特彼勒两公司选用配置瑞土专业电子仪器制造商Geodynamik公司开发的计算机软件和控制系统,用于连续压实控制(CCC)的压实数据系统(CDS)以及用于处理CCC的PC软件程序。对于这些无力开发的技术要用有限的资金去引进,在消化和吸收之后国内科研部门应联合进行技术开发,利益共享。
成熟技术可以直接嫁接。目前国内全液压压路机广泛采用进日的发动机、行走和振动泵及马达。国内合资和独资公司生产的挖掘机,其发动机电子控制系统可以实现对发动机转速、停车等自动控制,而广泛采用的液压泵(如美国萨奥90系列泵)本身配有转速、压力等传感器接口。免费论文,机电液一体化。。萨奥为德国宝马公司H型振动压路机配备的自动滑转控制系统,其爬坡能力高达68%。德国力土乐公司提供相应的可编程控制器,它不像大型矿用设备复杂且响应慢。这些都可以通过借船出海,作为协作配套厂家可直接利用该项技术。
5结束语
随着科技的发展和用户需求的日趋主题化、个性化和多样化,产品技术含量的高低和功能的多样性直接影响着企业的利润和生存。跨国公司为降低成本,实施制造本地化及采购全球化战略,使制造业竞争日趋激烈。为此企业应充分利用以计算机。数控技术为代表的电子技术,提高机械产品的智能化水平,占领市场,让用户满意。
参考文献:
[1]《工程机械机电液一体化》焦生杰等人民交通出版社2000-11-01
[2]《机电一体化系统设计与应用》舒志兵等主编电子工业出版社:2007-01-01
[3]《液压与气压传动》宋新萍机械工业出版社2008年4月
键控技术论文例10
1 前言
随着网络技术的迅速发展,广泛应用于工业社会的一个重要体现是一个组合的机械设备,提高制造业和计算机编程,所以他们称为数控加工技术,已经被广泛的关注和青睐机械制造商。数控技术是民生的一些重要行业中起着越来越重要的作用。机械制造行业已经成为技术内容和具有一定规模的工业生产行业。应用数控技术在机械制造工业,使我国制造业整体水平也在不断上升。数控技术结合计算机技术、自动控制、精密检测技术、网络通信技术和信息处理技术。利用其优势,提高整体水平的传统制造业向更高水平发展的领先地位,在激烈的市场环境使得机械制造行业在中国。然而,发展数控技术在整个中国仍然处于初始阶段的探索,在实际应用中还需要不断转型、发展,为此全封闭动态模式控制,论述了数控加工技术的发展,我们国家的未来动态从许多方面,驱动开发的数控技术在中国。
2 数控技术的基本概念
基本的想法是计算机控制技术与传统的机械制造技术、加工和制造业为了控制设备,它具有自动化、效率高、精度高、准确的程序控制是关键和核心技术的自动控制,已经成为一个重要的部分机械设计和制造过程。数控技术的原理。数控系统在数控技术是现代模型的数控加工技术的控制系统,它主要取决于编程实现不同的控制方法。这样的一个装置的核心是一个特殊的电脑系统,主要的程序,这个软件的实现过程,基本工作原理是:输入指标的加工设备,核心设备分析和处理后输出到驱动电路、实时控制和操作。主要设备的数控技术是以下几点:(1)机械设计和加工精度分析。传输设备和机械部件加工成为大多数数控机床的结构,以确保高速数控机械制造和高精度的要求。(2)自动化技术和精密控制。它扮演重要的角色在自动控制、缺陷可以补偿精度,传感器可以快速获得信息在不同环境中,是关键的自动化控制。
3 数控技术的应用领域
3.1 生产制造业
工业应用数控技术在制造业的主要控制有序生产线由计算机自动编程模块和操作过程在生产线,可以节省大量的劳动力,创造更多的经济利润,以确保产品达到质量要求。特别是在故障条件下的生产,确保工人的安全,维护正常的生产过程中,数控技术是传感系统的生产和传输的信息,计算机控制系统,自动停止和反应来保护。
3.2 汽轮机叶片加工
叶片加工国际竞争主要是反映在汽轮机叶片数控加工技术,不断创新和完善,数控加工技术,主要反映在。在特定的试剂生产,不断提高叶片加工数控加工质量、工作效率,减轻了工人的劳动强度,叶片轮廓接近理论概要文件提供了保障。涡轮叶片加工材料库存主要是精细铸造、锻造和钢。其中,对于叶片铸造过程是复杂的,好空白一个刀片,尺寸精密锻钢,材料是用来制造一个简单的静态叶片。
3.3 机床加工
数控技术是关键技术在机械加工、编程、加工效率可以实现自动化生产,机器自动执行零件加工需要。过程和几何信息自动控制机床组件在系统传输到数控技术、数字处理。为了实现数控加工生产线,实现生产的自动化和集成处理。编程的优点为数控机床是改变自动加工、装配指令程序可以实现输入,处理相应的代码,编程加工需求,多样化生产的要求,数控机床实现按照人们的要求。综合分析数控加工程序的案例:方法的数控机床主要用于切割和尝试,减少设计错误的机器零件,可以大大提高精度的元素。
4 结论
在实际的生产制造业,数控技术已经不断发展和应用先进的技术,但与国外相比,我们的核心竞争力在数控加工技术仍然处于相对弱势地位,创新和改革的数控加工技术,它将更加促进发展较高层次的生产和加工机械制造行业。只有用这种方法,能适应变化的全球变化的行业,以降低生产成本,增强产品的市场竞争优势。
参考文献
[1]刘治华.机械制造自动化技术[M].郑州:郑州大学出版社,2009.63-67.