乘法分配律教案集锦

乘法分配律教案范文1

案例描述一

(一)情境中初步感知

1.拍手游戏:学生列出综合算式表示教师共拍手的次数

先拍××××××(稍停顿)再拍××××××

学生列式:①3×2+3×4②(2+4)×3

得出:两个算式都表示6个3,所以两个算式是相等的,即3×2+3×4=(2+4)×3。

2.购物情境(见下***):购买10套服装共需多少钱?

学生根据两种不同的选配方案分别得出两道等式:

(1)65×10+45×10=(65+45)×10

(2)35×10+45×10=(35+45)×10

(二)初步概括,感受规律

3×2+3×4=(2+4)×3

65×10+45×10=(65+45)×10

35×10+45×10=(35+45)×10

以上三个等式中,“=”两边都表示相同的几个几。

(三)举例验证,揭示规律

17×3+21×3=(17+21)×3

(24+16)×8=24×8+16×8

(56+13)×11=56×11+13×11

(99+999)×9999=99×9999+999×9999

……

得出结论:为什么可以在不同的算式间画等号呢?这些等式之所以成为等式,是因为“=”两边都表示几个几,所以等式成立。

揭示规律,并用字母表示:(a+b)×c=a×c+b×c

(四)反思评价,积累经验

刚才我们是怎样发现这一规律的?你觉得你表现得怎么样?

(五)分层应用,体会价值

1.熟悉规律特征:在里填入合适的数,在里填上运算符号(其中包含规律的逆向应用)。2.判断,巩固对规律的理解:在得数相同的两个算式后面打“√”。3.应用中体会规律的实际意义:用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。4.初步体会规律的价值:算一算,比一比,每组中哪一题的计算比较简便。5.启发明确:应用不同方法解决问题时,有的计算方法相对简便一些。

案例描述二

(一)情境中初步感知

问题情境1:夹克单价55元、裤子单价45元,各买5件,一共需要多少元?

问题情境2:水果店上午卖出8箱水果,下午卖出12箱,每箱15千克。一共卖出多少千克?

问题情境3:商场里书包单价25元,有一种钢笔每支5元。买4个书包和4支钢笔,共需多少钱?

引导学生分别用两种方法解答:

情境1:(55+45)×5 55×5+45×5

情境2:(8+12)×15 8×15+12×15

情境3:(25+5)×4 25×4+5×4

(二)比较明确特征

上面的每个问题都可以用两种方法,得出:(55+45)×5=55×5+45×5

(8+12)×15=8×15+12×15

(25+5)×4=25×4+5×4

比较得出:形如“(a+b)×c”的计算更简便。

(三)举例归纳概括

学生举例:(25+5)×4=25×4+5×4

(19+21)×3=19×3+21×3

(46+54)×4=46×4+54×4

(33+67)×8=33×8+67×8

……

揭示规律:语言描述(略)。

用字母表示规律:(a+b)×c=a×c+b×c

(四)巩固应用:简便计算(题目略)

数学中是这样描述“乘法分配律”的:两个数的和与第三个数相乘,等于这两个数分别与第三个数相乘,再把它们的乘积相加。从这里不难看出乘法分配律的本质内涵,即等号的左右两边表示同样的几个几。以“3×2+3×4=(2+4)×3”为例,“=”两边都表示6个3。当出现“两个数的和”恰巧是整十或整百数可使计算简便时,仅仅是这一规律中的特例,是数字本身的特殊性决定了可以使计算简便。从数学规律的普适性来说,乘法分配律的字母表达式“(a+b)×c=a×c+b×c”中的“(a+b)”的和,可以是整十、整百数,也可以不是整十、整百数。

上面两个案例中,教者都能在现实背景中帮助学生体会规律的实际意义。其最大的不同在于:案例一中,无论是从情境中感悟、在比较中建立表象,还是归纳概括、练习应用,其各个环节,无不凸显出乘法分配律的本质特征:等号的左右两边表示同样的几个几。此案例中的教师准确把握了概念的内涵,其教学重心放在了理解“=”两边都表示几个几上,并在教学过程中逐层渗透。而对于“运用乘法分配律有时可以使计算简便”这一应用价值的体验,教者也是本着突出本质、初步体会其价值的原则:填空中熟悉规律特征――判断中巩固对规律的理解――应用中体会规律的实际意义――计算比较中初步体会规律的价值――用不同方法解题中明确简算方法。由此可见,案例一中教师抓住了概念教学的核心目标――理解概念内涵,这是任何一节概念教学课中都必须做到的。案例二则不同,在每一个问题情境之后,教者都安排学生先计算后比较,得出形如“(a+b)×c”的计算更简便,且每一个情境中“两个数的和”均是整十、整百的数。教者这样的设计,看似别具匠心,实则是近于“功利”的刻意。在接下来举例验证的环节,学生也都“依葫芦画瓢”似的举出诸多例子,且每一个例子中“两个数的和”不是整十数,就是整百数。教者似乎对于自己的教学效果很满意,随即便进行了“水到渠成”式的归纳概括,并且也总结出了字母表达式。殊不知,在简便计算的前提下总结出的规律缺少了普遍性,给学生的认识带来偏差――认为唯有“两数的和”是整十、整百数时,才叫乘法分配律。可以想见,由于教者对简便计算的过分关注偏离了概念教学的核心目标,犯下了缩小概念外延的逻辑错误。

小学生的认知水平有限,往往不能准确把握概念的内涵和外延,如果教师不能有针对性地加以引导,何谈准确地理解概念内涵呢?数学教学中让学生体会数学知识的应用价值,并能在解决问题的过程中灵活运用固然重要,但这要以准确理解概念内涵为前提,因为数学概念不仅是数学知识的“细胞”,更是一切数学思维的基础,如果不能准确地理解概念内涵,不仅会直接影响到学生对基本知识和基本技能的应用,而且会妨碍学生进行准确的判断,无法进行科学推理,直接影响思维能力的发展。所以说在概念教学中,应科学把握理解概念内涵与体验其应用价值的度,把探求概念本质放在教学第一位。

首先,教师应追根溯源探求概念本质。数学里的任何一个知识点都不是孤立的,要把握教材的实质,追根溯源很有必要。仔细分析乘法分配律的算式结构特点,不难发现,它与运算意义之间有着千丝万缕的联系。其实,之前学生在学习“多位数乘法的竖式计算”“相遇问题的应用题”以及“长方形周长计算”时,就已经接触到了乘法分配律。这就不难发现乘法分配律与运算意义之间的密切联系。如果以生活情境为载体,将教学活动定位在理解算式结构与运算意义的关系上,也就不难理解乘法分配律的本质内涵了。案例一中的教师就是从运算意义的角度追根溯源、深入思考,通过多个情境的铺垫,引导发现不同算式其实都表示“相同的几个几”,从而得出等式,学生把握知识的内在本质已是水到渠成。案例二中的教师只注重简便计算的练习应用,无法将知识真正纳入到学生的认知结构中。

其次,教师应树立核心概念意识。“乘法分配律”是一个重要的数学模型,“模型思想”是《标准(2011年版)》中提出的一个重要的核心概念,树立了这一核心概念意识,有利于教师理解教学内容的实质以及准确把握教学内容的重点难点。结合教学内容分析便知:建构形如“(a+b)×c=a×c+b×c”的数学模型才是本节课的教学重点,所以在教学中应更多地关注与“模型思想”关系更为密切的模型建立。案例一中的教师有较强的概念意识――“模型思想”,所以在情境感知、建立表象、抽象概括、巩固应用等教学环节均能把握住乘法分配律的本质内涵,帮助学生建立正确的、具有普遍适应性的乘法分配律模型。在这里,概念意识作为一种隐性的观念和思维方式呈现在教学的各个环节,使学生准确、透彻地理解了乘法分配律的内涵。由于案例二中的教师缺少核心概念意识,教学时只求应用、不求甚解,致使学生无法体会到规律的普遍适应性,不难想到:这是应试思想在作祟。所以说,树立正确的核心概念意识,才是真正理解教材的标志。

再次,教师应树立过程性目标意识。在乘法分配律这节课中,“会运用乘法分配律进行简便计算”作为一项显性的基本技能,代表的是结果性目标。而《标准(2011年版)》中明确提出关于过程性目标的描述,则更多地指向数学基本思想和基本活动经验,它作为一项长远性目标,将数学活动经验的积累作为目标得以实现的标志。所以教材中对本节课的教学明确提出“使学生经历主动参与探索、发现和概括规律的学习活动,理解乘法分配律”。在这个过程中,案例一中学生所获得的不仅是对概念的透彻理解,而且积累了如何去探索、发现,如何去研究的经验。案例二中教师仅注重结果性目标,忽略了过程性目标,学生所获得的仅是不具普适性的规律,以及片面运用知识的单纯计算技能,与“四基”的要求相去甚远。基于此,教学中应合理分配“理解规律内涵”与“体验应用价值”的教学时空比例,否则就会像案例二中那样重计算、轻理解,重应用、轻过程,这不是概念教学的科学做法。

乘法分配律教案范文2

上过五年级“小数乘法”一课的教师,都有一种很深的体会:在列竖式笔算时,学生关于数位的对位问题总是一知半解。列3.5×3的竖式,多有***1、***2两种样子,谁也无法说服谁。还有的学生实在搞不清楚,就想出了如***3的列式。其实不难想象,出现这些问题,正是受到小数加减法列竖式要求数位对齐的负迁移。尽管教师多次强调小数乘法列竖式要末位对齐,但当学生坚持说***1也没错时,教师也显得有些无可奈何了。很明显,***4~***6也说明,在列竖式的过程中学生很难摆脱小数的束缚,带来的后果是,要么算错,要么算不下去。

我们知道,整数乘法的竖式与它的横式思考方式是一样的,都是运用乘法分配律。例如32×14就是4个32与10个32的和,列竖式也正是这样的过程体现。但是到小数就有点不一样了。其实3.2×14也完全可以想成4个3.2与10个3.2的和(从算理上讲,列竖式这样去想也是对的,如***5),但是真正在列竖式时我们却把它们当作整数乘法去推算的,中间过程并不会出现小数。如果认可了***5的正确,那么像***4这样的错误率就更高了。

教师引导学生把小数乘法转化为整数乘法来算(***7),也一起分析了算理,但学生的视觉“告诉”他,这样做“很不和谐”:小数相乘中间过程却是整数,到最后又是小数。所以“小数乘法”教学的真正难点是帮助学生越过这个坎。教师对此一般的做法就是“充分感受、正面强化”,笔者以往也一直都是这样操作的。但是学生升到六年级之后再去问他们,为什么***7竖式中间过程没有小数?他们多是含糊其辞,最后总是以“以前老师是这样教的”来结束问答。于是笔者大胆设想,不妨把小数乘法直接改成整数乘法(在列竖式之前),用列整数乘法竖式进行推算(如***8),效果是不是会更好呢?

二、设计过程及前后比对

【设计第一稿】

在正式决定上这节课之前,笔者对本课教材进行了分析,也进行了多版本教材间的比对,发现了一些共同的地方:一般都在具体情境中引出小数乘法算式,用多种方法思考答案(如转化成加法算、转化单位算、数形结合算等),通过积的变化规律进行算理分析,最后是熟练巩固。遵循这样的思路,笔者设计了教学的第一稿。

(一)复习铺垫

1.出示***9,请学生快速口答。

2.说算法:说说速算的办法。(小数点位置移动引起小数大小变化)

3.环节过渡:3.5×3是否也与小数点位置移动有关?

(二)新授展开

1.给算式3.5×3赋予一定的现实情境(市场里买东西,西红柿3.5元/千克)。

重温数量关系:单价×数量=总价。

2.讨论交流,用学过的方法求出3.5×3的答案。(强调:已学过)学生中一般会出现以下几种方法:

(1)转换算法,用加法做――点拨小数乘法的意义。

(2)转换单位,化元为角――化成整数算。

(3)分解小数,分步计算――运用乘法分配律。

3.尝试用竖式计算,使过程更简洁。一般学生中会出现两种情况(见***10)。

4.找出两种方法的共同之处:都是将3与3、5分别相乘。引导发现与之相关的整数乘法算式(见***11)。从运算角度进行算理分析。

5.及时巩固,强调照样子写出思考过程(***12:6.4×4,6.32×3)。

6.重点讨论:左右两个竖式“保留哪一个”,明白用整数乘法竖式可以解决小数乘法计算的道理。

7.即时练习两道题,特别是两位数乘两位数(5.4×5,5.4×42)。

(三)练习巩固

1.基础练习:口算6道题,强化算法。

2.实践应用:出1道关于解决问题的题目,关注小数末尾去零的问题。

3.拓展提升:同一个竖式可以解决许多小数乘法计算的思考分析。

按照这样的教学设计经过两次课堂试教以后,笔者发现了一些问题。

问题一:在新授展开的第一步,请学生用学过的方法求出3.5×3的答案,学生似乎并不领会,计算这个答案似乎仅凭经验或直觉就可以得到(学生有太多的购物经验了),不需要什么方法。在笔者的一再要求下,转换方法、转换单位、分解小数用分配律算等方式总算都呈现出来了,但总体感觉是算法多样化并没有给学生带来多少课堂兴奋。

问题二:在新授展开的第四步,要求学生从运算的角度进行算理分析时,课堂也比较沉闷。因为前面已经知道10.5这个答案了,为什么还要这么复杂地分析来分析去。学生大多对此表示不理解。

问题三:在新授展开的第六步,笔者意在通过分析与讨论,让学生接受用整数乘法可以推算小数乘法,因此在列竖式时直接列成整数乘法竖式就行。但笔者的良苦用心学生并没有领情。到最后笔者只能强调,右边整数乘法这个竖式其实就是我们很重要的思考过程,在计算时只要保留这一个过程即可,随即把左边的竖式隐去。

问题四:在新授展开的第七步出现了课堂生成,既是问题也是契机。学生在列5.4×42的竖式时,出现了两种竖式,这说明有些学生还没有真正接受前面的知识。列***13的学生很快算出了答案,列***14的学生一直在嘀咕――怎么算呀,我哪写错了。于是笔者进行了干预:“像***14的算法,如果没有列成整数乘法的竖式,大家看看,是不是出现问题了,这位同学算不下去了。请下面哪位同学来帮一下,稍加改动,他就会明白了。”于是有学生上来将竖式21.6中出现的小数点擦去,也算出了226.8,笔者真的很无奈。

良好的设计意***并没有达成理想的教学效果,是需要反思的。回到教材,对比教材中的示例(例1:3.5×3与例2:0.72×5)。例1主要是在具体情境下理解不同的算法(有单位支撑),例2是脱离了具体情境,运用转化整数的方法,从积的变化规律的角度去进行分析的,并且这两个例题所出示的具体算式是不一样的。而笔者在自己的教学设计中,试***将例1与例2通过同一个材料3.5×3给以集中体现,学生显得有些思维疲倦。在知道答案的情况下还要进行不断的思考分析,让学生提不起精神。反思整个设计,总的来说学习材料缺少吸引性,思考力度缺少挑战性,教师给予的多,学生体验的少。笔者想重点体现的“用整数乘法(竖式)推算小数乘法结果”这一核心思想并没有出自学生主动的发现与积极的感悟,多的是“被发现”与“被灌输”。为破解问题,笔者进行了重新设计。

【设计第二稿】

(一)复习铺垫

口算

(设计意***:三组题逐一先后出现,***15因为数据简单,学生可以直接算答案,也可以根据积的变化规律算,***16迫使学生自觉地运用积的变化规律算,***17更抽象,在54还没给出之前是算不出来的,给出54以后,有学生会去想是多少,然后再进行填空计算,有的学生会沿用积的变化规律填空,这样的学习面向的是全体学生,又伴随着不断地“发现”,他们会体验这种“发现”的乐趣,这是用数学本身去吸引学生。)

(二)新授展开

1.口算。

6组题逐一先后出现,特别在***18、***21、***22、***23处作重点展开讨论。

(1)讨论***18:学生受到前面复习的迁移能很快算出3.5×3的答案10.5,教师反问:以前整数乘法里我们会运用积的变化规律,难道小数乘法也适合用积的变化规律?你能说明理由吗?由此学生将主动寻找各种算理来说明问题。方法主要也是前面第一稿中讲到的“转换为加法”“借用或转换单位”“分解小数用乘法分配律”等方法,但是这种学习状态是积极的,因为他们想努力证明自己的“猜想”是正确的,是为自己找理由。这里教师重点写出35―3.5、105―10.5这两个数之间的关系。

(2)讨论***21:这里有一个数未知,你竟然也算得出答案?这样的提问一下子将学生的地位抬高了,他们的解释是积极的、愉快的,因为他们觉得自己“很有能耐”。

(3)讨论***22:这题上下要反着出。先出3.15×14=,然后提问,你想知道哪个整数乘法算式?根据学生的要求,教师再给出315×14=4410,学生很快就推算出答案,并主动给出推算的过程。教师重点写出315―3.15,4410―44.1这两个数之间的关系。

(4)讨论***23:继续***22的方式,上下两题反着出,先出6.42×13=,然后提问,你想知道哪个整数乘法算式?学生提要求,但教师只给出642×13=,并不像***22那样直接告知整数乘法的答案,由此学生的思维与行动将合一指向642×13的竖式解答, 他们会快速算出答案8346,进而推算出小数乘法的正确答案。学生在计算答案的过程中体会到了学习的快乐。

2.小结提炼。

(1)呈现板书并交流。

(设计意***:小数乘法通过整数竖式推算出来,此时已是学生积极主动的行为,无须强调,教师只需追问一下学生:你是怎么想的?进而将扩大、缩小的倍数关系补充完整,让思维外显出来。然后重点强调,以后这样的小数乘法计算我们就可以通过整数乘法竖式将它推算出来,为书写简便,整数乘法的横式与板书中的扩大缩小的书写都可以省略不写。整数乘法这个老朋友可以帮助我们解决小数乘法这一新知识,随后与下一环节中的巩固练习相衔接。)

(三)练习巩固

1.基本练习,注意写竖式过程与书写格式。

2.算用结合,解决实际问题。

3.拓展提升,引导学生思考同一个整数乘法竖式可以解决许多小数乘法问题。

重新设计的“小数乘法”一课,经过课堂检验,顺利地解决了第一稿设计中存在的问题。学生在课堂中时而紧张、时而愉悦、时而兴奋,专注力很高。教材中强调小数乘法的计算结果一般要舍去小数末尾的0,这作为一个知识点,在传统的课堂教学设计中,教师讲了多次,还是会有学生忘记。有的学生搞错了先后顺序,先去掉了末尾的0,再添小数点。而在笔者的教学设计与课堂实践中没有任何提及,学生很自觉地省略了,这是一个很意外的发现。仔细想来,因为根据整数除法的学***验,一个整十,整百…数除以10,100…在心算过程中,它们末尾的0早已被自动抵消掉了。

三、写在最后

在文中,有一问是值得我们关注的:以前整数乘法里我们在运用积的变化规律,难道小数乘法也适合用积的变化规律?笔者以为,这种规律的迁移是否合理虽然不需要证明,但需要讨论,就像整数加法交换律、小数加法交换律、分数加法交换律,虽然难度很小,但教材都安排了新课,因为在学生看来,整数与小数毕竟长得不一样。这也就是为什么全体学生并非一下子都能想到“将小数乘法转化为整数乘法最后将答案进行推算”的最重要的原因。

乘法分配律教案范文3

一、 第一次教学“乘法分配律”

第一年走上讲台,自己所带的班级就是四年级。因为是第一年,所以对于教材有着陌生感,对于学生也好像有着距离感,因此在备“乘法分配律”一课时,我几乎是完全按着书上的思路,一步一步照搬的,上课也是规规矩矩照着教案上的:

(1)创设情境,导入新课:(出示课件)在商场里,短袖衫32元/件,裤子45元/条,夹克衫65元/件。提问:如果朱老师要买5件夹克衫和5条裤子,一共要付多少元?

学习新知:学生***计算以后交流,教师根据学生回答并做板书。学生回答以后并让学生讨论分析等式两边的算式有什么联系?通过讨论让学生发现规律:两个数的和与一个数相乘,等于两个加数分别与这个数相乘,再把两个乘积相加。这个规律就是我们要学习的乘法分配律。然后再用字母表示这一个规律:(a+b)c=ac+bc。

(2)组织学生练习:这一次教学乘法分配律以后,大部分学生能说出乘法分配律的公式,也能用一句话叙述乘法分配律。但是,乘法分配律比较抽象,所以学生容易忘记,而且,在实际应用中,也说明了乘法分配律很抽象,应用时容易出现这样的错误:25(40+4) =2540+4。

二、 第二次教学“乘法分配律”

首先我也是创设情境,提出相同的问题,让学生***解答,然后展示两种方法。并由此发现这两个算式是相等的,可以用等号把它们连接起来。接下来就是让学生体验和感悟这一规律,并让学生试着用自己的话描述发现的规律。最后揭示规律,但是,这次我并没有简单而直白地说出“两个数的和与一个数相乘,等于两个加数分别与这个数相乘,再把两个乘积相加”这句话,而是根据学生发现的规律,玩了一个“交朋友”的游戏。

出示:(80+20)4,谁是它的好朋友呢?首先我来讲一个小故事,之后你肯定就知道了:80和20打着一把小伞,一块去和4交朋友,4可热情了,它和80握握手,又和20握握手,多公平啊。80和20开心得把小伞都丢掉了。听完后,大家都会心地笑了,异口同声地说:(80+20)4=80×4+20×4.

然后我再出示几个类似的算式,让学生帮着它们去交朋友。大家都很乐意去讲故事,通过讲故事,不仅掌握了乘法分配律,而且这一规律还不容易遗忘。

三、“同课异上”后的反思

两次教学乘法分配律,区别就在于:第一次直白地揭示了乘法分配律;第二次,虽然没有直接说出那一句话,但是,我通过讲故事、做游戏,形象地描述了乘法分配律。同样讲的是乘法分配律,后者只是把抽象的乘法分配律用形象的语言描述出来,为什么就会产生不同的效果呢?这两次教学“乘法分配律”,让我深深得明白了:

1.兴趣是小学生学习的源泉

小学生的注意力是不稳定、不持久的,且常与兴趣密切相关。形象、生动的事物较易引起他们的兴趣和注意,而对于抽象的概念和定理,他们则不太感兴趣,也就无法集中注意力去学习。有了兴趣,才会集中注意,才能把被动学习变为主动学习。数学教师想要上好一堂数学课,必须了解学生的兴趣,设计符合学生兴趣的教学过程,并在课堂上利用自己形象的教学语言把知识传授给学生。

2.形象语言是开启兴趣大门的钥匙

兴趣在数学学习中具有不可替代的作用。要使学生觉得数学课有趣,关键就在于教师的语言要形象、生动,能化深奥为浅显,化枯燥为风趣。有了形象的语言,就能创造愉悦的学习气氛,让学生感到课堂新奇多趣,知识也易于理解。总之,形象的语言能吸引小学生的注意力,紧紧抓住他们的眼球,激发他们听的兴趣,让他们乐于在数学的海洋中尽情地遨游。

3.数学教师应不断丰富课堂中的语言

苏霍姆林斯基曾说过:“教师的语言修养,在极大程度上决定着学生在课堂上的脑力劳动的效率。”教师上课离不开语言表达,教师语言表达的优劣直接影响着课堂教学质量的高低。作为一名教师,不但要有深邃的思想、渊博的知识和娴熟的教学方法,还要讲究教学语言的艺术。

(1)数学教师的教学语言要准确规范,严谨简约。只有严谨的教学语言才不会让学生产生误差,发生概念的混淆。

(2)教师要善于发现学生的特点,了解学生的个性,知道学生的喜好,再运用形象有趣,通俗易懂的语言去教授知识。

(3)数学教师还应有幽默风趣的教学语言。因为幽默可以活跃课堂气氛,调节学生情趣,学生在心情舒畅的环境中学习效果要比在沉闷的环境中学习效果要好得多。

乘法分配律教案范文4

回顾本节课的教学,当我一出示例题的情景***后,就有个别学生就把乘法算式脱口而出,但是当我问到:“为什么这样列式?”时,学生无语。本节课的要求是让学生能够根据实际问题采用罗列、连线和画***等方式,找出简单事物的排列数,并发现一些规律,至于“用乘法计算”,教师不能急于提出,针对此,我把教学的重点放在了学生用数学语言的表达上,让学生动手摆一摆,并通过连线来记录不同的搭配方法 ,然后在小组中交流操作的方法,并结合乘法的意义,表达两种思考方法:一种是一顶帽子和一个木偶搭配有3种搭配方法,现在有2顶帽子就有2个3种搭配方法,共有2×3=6(种);另一种是一个木偶和一顶帽子搭配有2种搭配方法,现在有3个木偶就有3个2种搭配,共有3×2=6(种)。然后学生通过学生观察、讨论并发现了木偶的个数、帽子的顶数和有多少种搭配方法是的关系,学生经历了“实践操作----方法提升----建立模型”的过程,教学效果不错。

本节课引导学生探索两种事物进行简单搭配的规律。通过学习,指导学生有顺序、有条理,由具体到抽象地进行思考,探索出多种搭配方法的数量关系,发展学生的思维,并让学生在解决问题的过程中体会到现实生活中的问题可以用数学方法去解决。在课前我让学生准备好课上操作的木偶娃娃和帽子,(可在纸上画,再涂色)我发现学生在课堂上自己操作搭配时方法多样:有用实物的、画***的、有连线的,同时也注意到了按顺序搭配,及连线时***形的摆放位置等。通过学生自主学习交流后,再让学生到前面演示,同学生们很会说,并且都知道有6种不同的搭配。在这个基础上我引导学生列出乘法算式,即找出用乘法计算的规律。后面的练习,对于数量关系中几个几,我又作了重点强调,让学生明白为什么列出这样的乘法算式,加深对规律的认识,进一步理解用乘法做的原理。

今天教学了找规律的第一课时搭配问题,这是继间隔问题后的找规律问题。大家都认为本课教学很简单,学生都通过连线找到结果。我在教学前就思考,在学生通过自己的方式解决例题后,师生共同优化方法,理解连线(搭配)的过程中的有序性。然后把重点放在让学生有条理地表述搭配的过程,如“一顶帽子可以分别和4件上衣搭配有4中搭配方法,3顶帽子就会有3个4种搭配方法”,或“一件上衣可以分别和3顶帽子搭配有3种搭配方法,4件上衣就有4个3种搭配方法”。表述有困难的学生我让他们连出第一步的搭配过程,就是只拿出一类中的一种分别和另一类的几种搭配的连线***,再让他看着这一“半成品”***表述出搭配过程及算式的意义。这样的过程在别人看来或许多余,但我不这么认为,因为这一课虽然看似简单,但这一教学内容简单的目的就在于让学生在简单中找出规律,理解这一规律的实质,而不是仅仅让学生知道连线,知道用乘法解决,我们教学的目的不是在此。而且只知道连线的话,搭配的东西一多,连的线恐怕会自己都数不清吧。所以在内容较简单时我更愿意花时间帮助学生学会用数学语言表述算理及过程,正如课堂总结时我问学生,今天没学时你会解决例题中的问题,但通过这一节课的学习,你有没有收获呢,学生自己也说,没学时,我会一一搭配或通过连线找到答案,现在我还知道了这一答案的实际搭配规律。

乘法分配律教案范文5

关键词:

一、 案例背景

人教版四年级下学期《运算定律与简便计算》这一单元在整个小学数学知识体系中起着举足轻重的作用,这块知识的掌握程度直接影响到五、六年级小数及分数的简便计算,其重要程度好比大厦的基石。学习本单元前,学生对这一块知识并不陌生,如加法交换律、乘法交换律在进行加法验算、乘法验算中接触过,乘法交换律、乘法结合律、乘法分配律、连减的性质、连除的性质在部分“解决问题”的题目中体验过,如:计算长方形的周长,可以用“(长+宽)×2”,也可以用“长×2+宽×2”,又如:一本书有150页,第一天看了35页,第二天看了29页,还有多少页没看完?两种方法合到一起就是连减的性质,等等诸如此类的题,但这些知识的出现是零散的、不全面的,本单元把它们集中到一起学习,并抽象出运算定律和运算性质,给学生建立起完整且清晰的知识体系。学生之前有了一定的知识基础,学习此单元本应该是得心应手,但令数学老师感到困惑的是这一并不陌生的知识运用起来却不尽人意,做练习时要么是几种运算定律产生混淆,要么不能根据数字特点自发的进行简便,要么毫无依据的随便简便(错误简便),正确、灵活地运用运算定律及运算性质进行计算令学生颇有困难,于是有些老师便采取题海战术,熟能生巧,不怕你不会,因此花了大量的时间,但收效甚微。笔者认为,从学生的需要出发进行练习,可以起到事半功倍的效果。

二、 案例描述

片段之一:揭示课题

     师:同学们,今天我们进行“运算定律与简便计算(单元练习)”,主要考考大家的眼力及思维能力。

     板书课题:运算定律与简便运算(单元练习)

说明:引入课题单刀直入、简单明了,既节省时间,又提出了要求,让学生明确计算的两件法宝,一是眼—审题,二是脑——选择正确的解题策略。

片段之二:抢答

师:我们先来热热身,抢答下面各题,并说说计算的依据。

 64+120+36          189+43+57           37×25×4           125×37×8    

 62×(100+1)      395—68—32  

抢答激发了学生的热情,同学们纷纷举手,教师根据学生的汇报板书相应的运算定律及运算性质。前面的练习一帆风顺,学生抢答争先恐后,突然150—20+30跳出屏幕

 一学生迫不及待地喊:100  (学生掉进了陷阱)

 师稍停:真的是100吗?(很多学生发现了问题,小手林立)

 生1:不是100,是60

 生2:不能先算加法,它没有括号,要从左到右依次计算。

 师:那么怎样才能先算20+30呢?

 生1:把加号改成减号。

 生2:把20+30打上括号。

 师:对,这两种改法才能用连减的性质去做。

抢答继续进行,紧接着出示360÷12÷3 ,学生快速抢速,没有难到他们,屏幕快速跳出200÷5×4 =

我找了一位中下生,由于受思维定势的影响,该生也掉入陷阱,大声回答:等于10

     教师再次引导学生对比、讨论。

屏幕最后出现:36+50—36+50

     一位平时成绩很不理想的孩子也高高举起了手:等于0

马上有不同声音反驳:“不等于0,没有括号”。

师:对,如果36+50打了括号就能先算加法,结果等于0,那么应该怎么计算呢?

生1:从左往右计算

生2:先算36—36

 ……

说明:让学生边抢答边回忆运算定律及运算性质,达到了练中促忆的目的,也有助于在学生头脑中建立本单元的知识网络,让学生对本单元知识有一个清晰且全面的认识,这种认识是整体性的、清晰的,而不是零散的、模糊的。另外实践证明,学生的简便意识过强也会导致只求简单而不思正误,所以在快速抢答中插入几道易混易错题,以引起学生强烈的认知冲突,从而提升学生的辨别能力。

片段之三:纠错、改错

出示学生平时的错题照片。

哗,同学们非常惊讶。

师:你能说说错误的原因吗?(学生逐题寻找原因)

师:会更正吗?

学生在错题旁进行更正,教师选几题让学生说说使用了什么运算定律。

师:通过这题你有什么感想?

生1:简便算法要有依据,不能随便简便。

生2:不能随便加括号,有些题加了括号虽然简单,却是错误的简便。

生3:做题之前要先看题,想好了再做。

生4:不要被表面现象所迷惑

生5:不能只顾埋头拉车

师:对,首先要学会抬头看路,先看看题目能否简便,能简便的一定要有简便依据,比如说这几题(指着屏幕上前4题),没有简便依据的就按四则运算法则进行计算,比如这几题(指后面两题)。

说明:以上习题都是学生平时的错题,而且是一些典型错误,用照片方式呈现出来,体现了一种真实感,很容易吸引学生的眼球,并且给学生一种内心的强烈冲击,这就是我曾经犯过的错误或我的同学犯过的错误,从而引发了学生强烈的纠错欲望。里面有几道非简算题,这几题主要是训练学生的辨别能力,让学生明白简单的错误计算并不等于简便。这种针对学生的典型错误开展练习,起到了事半功倍的效果。后面叫学生谈感想,是对解题方法、解题习惯的一种指导,把老师想说的话通过学生说出来,其效果比老师不断强调好得多。

00

片段之四:对比练习

1、街心花园有玉兰树和海棠树各3行,玉兰树每行12棵,海棠树每行8棵。两种树一共有多少棵?玉兰树比海棠树多多少棵?

2、街心花园有3行玉兰树、4行海棠树,玉兰树每行12棵,海棠树每行8棵。两种树一共有多少棵?玉兰树比海棠树多多少棵?

全班***完成,教师巡视,相机叫学生上台板书,黑板上的板书有正确的,也有错误的。

教师重点引导一个错误算式:(12+8)×(3+4)

师:这样做对吗?

生:不对

师:为什么?(师追问)

该生无语,另有几只手举起来,我见举手的人不多,便接着引导:我们先把3+4算出来,变成(12+8)×7,这时有较多的手举起来,但个别学生还是茫然,继续引导:如果我们把它变成12×7+8×7,几乎全班同学举起了手,此时水到渠成,我指名一中下生回答。

生:玉兰树与海棠树各有7行了,题目是3行玉兰树、4行海棠树。(该生准确回答)

师:那么第一题能列成算式(12+8)×(3+3)吗?

刷,全班举起了手。

生:那不是玉兰树和海棠树各有6行了吗?

……

教师没有就此结束,继续追问。

师:为什么第一题可用乘法分配律做,而第二题不行呢?

生:第一题玉兰树和海棠树的行数是一样的,第二题不一样。

师:对,乘法分配律中必须有一个相同的因数。(师强调)

……

说明:这两道题看起来很简单,在学生学习乘法分配律之前他们已有接触,但自从学了乘法分配律以后,一些学生反而糊涂了,因为乘法分配律较其他运算定律更为 抽象,部分学生对这一概念一时难以理解透彻,但自认为自己学会了,于是出现不假思索,乱套公式的现象,这种错误现象在求相遇问题的时候也时有发生,学生往往把两个相同的时间加起来。所以此题的目的有两个:一是通过学生的错误让他们深刻理解乘法分配律的真正含义。二是通过对比,让学生明白乘法分配律中必须有一个相同的因数,通过对比辨识再次强化了乘法分配律的算理。乘法分配律是本单元的一个难点,学生易错、易混,让学生明确其算理是极为重要的,但是算理不应仅仅停留在算式上,因为算式较为抽象,而生活问题具体形象,通过生活问题能让学生对其有一个更加清晰地认识。

片段之五:深化练习

出示如下画面:

师:你能根据这些信息提出数学问题吗?

生1:高云、玉冰可以买多少支水彩笔?

生2:泓杰可以买多少盒水彩笔?

生3:高云、玉冰买水彩笔用了多少钱?

学生分别列出式子并解答,教师巡视,并请几名学生上台板演,一个错误的解答引起我的注意,随即让该生板演。

算式:25×12

     =25×(4×3)

     =25×4×25×3

     =7500(支)

师提问该生:你用了什么运算定律?

该生自信地说:乘法分配律。

其他学生举起了手,教师不加理会,手指乘法分配律公式继续追问:乘法分配律有什么特点呢?

生:有加有乘两级运算。哦,错了,应该是乘法结合律。(该生恍然大悟)

师强调:对,从运算符号上来看,乘法分配律含有两级运算,而乘法结合律只含乘法一级运算。不过,虽然你用错了定律,但你能自觉用简便方法计算,还是要表扬的。

说明:此题重在训练学生问题意识,我国著名教育家陶行知先生说过:提出一个问题比解决一个问题更重要。从小培养学生的问题意识,有利于学生良好思维品质的形成,有利于培养学生的创新思维和创新能力,学生的这种能力不是一朝一夕形成的,也不是老师强加给学生的,而是在于平时的教学中一点一滴地渗透。此题另一重点是训练学生的简便意识,看学生能否在平时的练习中自觉运用简便方法计算,巡视时发现表现良好,但发现一个错误,教师敏锐地发现这也是部分学生易犯的错误,于是再次利用错误资源深化乘法分配律及乘法结合两种运算定律的不同之处。

片断之六:拓展练习

出示:3.76×850+85×62.4

师:这道题有点难,想挑战吗?

生齐答:想

随即教室里非常安静,几十双眼睛盯着屏幕思索,一时无人举手。

师:能否用我们学过的知识解答呢?

个别学生想举手,但有些犹豫。

师再提示:上学期我们学过积不变……。

几位思维活跃的学生立即高高举起了手

……

说明:学生的潜力是无穷的,其内心也有一种渴望成功的欲望,教师不能只满足于学生掌握一些基本知识、基本技能,要以发展的眼光看待问题,努力开发学生的潜能,开启学生的智慧,实践证明,学生跳一跳摘到的桃子是最香甜的。

三、 案例反思

1、从学生的需要出发,重视练习的“多样性”

课堂上如果教师一味地讲,学生一味地听,教师的语言很可能成为催眠曲,如果让学生一味的做,也会引发学生的厌烦情绪,总之一味重复某一单一的活动,会造成疲劳效应,引起学生注意力涣散,导致课堂效率低下。俄国教育家乌申斯基曾经说过:注意是心灵的天窗,只有打开这个天窗,才能让智慧的阳光撒满心田。本课中形式多样化的练习保持了学生的注意力,激发了学生学习的热情,课始的抢答就像一项热身运动把学生迅速从课外拉进了课堂,当这股热劲还未褪尽时,学生平时的典型错误又以照片的形式真实的展现在他们的面前,哗,学生惊呼,投影屏幕像磁铁一样吸引着孩子们的眼球,几道熟悉且真实的题目把他们引入到积极地纠错、改错状态中,在畅谈感想中他们说得多好啊!“简便算法要有依据,不能随便简便”。“不能随便加括号,有些题加了括号虽然简单,却是错误的简便”。“做题之前要先看题,想好了再做”。“不要被表面现象所迷惑”。“不能只顾埋头拉车”。紧跟着的对比练习又把他们带入了另一种状态,几例错误答案引发了他们的探讨。接着看***提问并解答的练习题又满足了学生的成功感,最后的拓展练习更激发了学生挑战难题的欲望,几十又眼睛盯着屏幕,他们在观察、在思考……。课后几位同学跟我说,这节课过得真快呀!一位调皮的学生说:下节课还是数学课吗?

2、从学生的需要出发,注重练习的“针对性”

练习设计要做到“目中有人”,注重学情,以学生为中心、为主体,有目的、有针对性地展开练习,如果眉毛胡子一把抓,将如蜻蜓点水,很快了无痕迹,而根据学生的实际情况开展的练习将会使学生印象深刻,产生强烈的共鸣感,美国著名教育心理学家奥苏伯尔曾经提出这样的命题:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么,我将一言以蔽之:影响学习的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并应据此进行教学”。本课从以下两方面进行了富有针对性的练习,第一,针对学生的薄弱环节进行练习。本课第一环节抢答题中夹杂了几道学生易错的题,如:150—20+30  200÷5×4  36+50—36+50,由于受思维定势的影响,学生一次次掉入了陷阱,当他们从陷阱中爬出来时,以后再掉下去的机会就会少得多了。第二环节的纠错、改错又给了学生强烈的冲击,当他们自己或同伴曾经犯过的错误那么真实的出现在眼前时,教室里立即出现一声惊呼,随即全情投入,他们争先恐后地指出其中的错误,完全融入其中,因为把身边的错误改正过来令他们倍感亲切。第三环节的对比练习是专门针对乘法分配律的一项练习,因为乘法分配律较抽象,是本单元的一个难点,学生易混易淆,本节课浓抹重彩地进行了强化训练。第二,利用学生的错误资源展开探讨。在对比练习中,第二小题的解答某学生列出了如下算式:(12+8)×(3+4),教师以此为契机进行引导,师:我们先把3+4算出来,变成(12+8)×7,这时有较多的手举起来,个别学生还是茫然,继续引导:如果我们把它变成12×7+8×7,几乎全班同学举起了手,此时水到渠成,学生对乘法分配律的算理在层层剖析中更为清晰了。在看***按数学信息提出问题的解答中,一位学生也出现了如下错误:25×12=25×(4×3)=25×4×25×3=7500(支),教师敏锐地发现这是学生的典型错误—混淆乘法结合律与乘法分配律的概念,随即叫该生板演,并且反复追问,该生终于恍然大悟:“哦,错了,应该是乘法结合律”。错误资源强化了两 个概念的不同点,学生对两个概念较之前更清晰、更明确了。

3、从学生的需要出发,追求练习的“发展性”

乘法分配律教案范文6

【关键词】计算教学;数感;案例;反思

一、教学设想――教学目标

(一)注重算理和算法教学的同时,体现速算

《数学课程标准》对计算数学有明确的要求,即淡化笔算,重视口算,加强速算.乘法分配律是学生继续学习速算的重要基础,在教材中占有重要地位,我力求把培养学生的简算意识,发展学生的简算能力融入教学,在课堂上形成具体的教学行为并加以体现.

(二)以观察、分析、比较、探索为主线,鼓励学生简算多样化

学生是课堂教学中的主体,将更多的时间,空间留给学生,是调动和发挥学生主体意识的重要途径之一,引导学生有步骤地观察、分析、比较,就让学生主动参与到探索和交流的教学活动中来.

(三)让学生充分评价和反思

在教学过程中要引导学生加以评价,加强反思.当学生探索出简算规律时,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种简算方法是否更具有一般规律性的或普遍规律性的.

【教学流程】比赛激趣,提出猜想:1.看哪组算得又对又快!第一组:9×37+9×63;第二组:9×(37+63);2.评出胜负:有什么意见吗?这两道题有什么关系吗?引导学生发现:这两个算式的运算顺序不同,但结果相同,并且可以互相转化,可用一个等式表示:(37+63)×9=37×9+63×9;3.将学生的发现以他(她)的名字命名为“××猜想”.(板书:猜想)

二、引导探究,发现规律

1.出示例题:要求学生自己解答.提问:这道题为什么会有两种算法?观察这两种算法,你有什么发现?

2.举例验证,进一步感受.你还能举出一个生活中含有这样规律的例子吗?(板书:举例)先在小组内说一说,并试着用两种方法解答,再列出如上的等式.轻声读这些等式,你发现了什么?

3.判断、辨析.创设计算比赛的情境,引导学生进行探究.把算式卡片中可以用等号连起来的挑出来,如果有争议可以算一算来验证一下.(学生小组展开讨论)

4.归纳总结,概括规律.①现在,谁能说一说这些等式有什么共同特点?(板书:总结);②刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现结果不一样的例子?只要举出一个反例,这个猜想就不成立了.看来这个规律是普遍存在的.这样的猜想是正确的.这个规律数学上叫乘法分配律(板书).刚才我们举了很多有这个规律的例子,这样的例子能列举完吗?③我们能不能用一个式子把乘法分配律表示出来呢?等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?任何事物都可以从正反两方面去看,这个等式反过来也成立.

三、自主探究,概括规律

讨论交流结束后,我让学生观察屏幕上呈现的两列清晰的和积与积和相等的式子,去发现、寻找共同点,并凭借乘法交换律、结合律字母表达式进行迁移,让学生自主用一个公式来表达这种特征的式子,从具体等式到一般等式,并对它进行命名,把学生组织到与权威挑战的前沿,培养学生的批判意识和挑战观念.进而呈现一组同学们公认的字母表达式,建立起乘法分配律的运算模型.

四、探索拓展,应用规律

1.我们发现了乘法分配律,它又有怎样的应用呢?(板书:应用)

(学生举例)素材――5组算式,使学生在辨析与争论中,自然而然地完成猜测与验证,逐步加深对乘法分配律的认识.

由特殊到一般,归纳、总结、概括乘法分配律,用字母表示规律,加深对规律的认识和理解.

2.看来,应用乘法分配律可以使一些计算简便.下面请同桌同学合作研究.这些题目怎样计算比较好?出示:(80+4)×25;34×72+34×28;102×43(生讨论研究)汇报计算方法,重点说为什么这样算.三道题都应用了什么运算定律?

3.小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?

乘法分配律教案范文7

一、对“还有不同想法吗?”“还有吗?”“还有吗?”……的思考

案例A:

《两位数加两位数进位加法》一课,教师出示例题“47+32”让学生进行口算。

生2:先算40+30=70,再算7+2=9,最后算70+9=79。

师:还有不同算法吗?

生2:先算7+2=9,再算40+30=70,70+9=79。

师:还有吗?

生3:先算47+2=49,再算49+30=79。

师:你真棒!还有吗?

生4:先算32+7=39,再算39+40=79。

师:还有吗?

生5:先算47+30=77,再算77+2=79。

师:还有吗?

……

案例B:“分数的意义”的教学,课堂中设计了“从12个圆中创造出分数”这一环节。

请同学们拿出12个圆片,动手分一分,看看你能创造出哪些分数,并把它写下来。比一比,看谁发现的分数多!

(学生小组合作实践,试着摆圆片,并写下分数,然后教师组织反馈交流)

(有一位同学首先说发现了1/2,教师让他在磁性板上粘贴圆片)

师:12个圆片还可以怎样分也能表示1/2?

(又有学生上台粘贴圆片,表示出1/2的不同分法。共四种,***略)

师: 这四种分法相同吗?为什么?

生1:虽然分法不同,但都表示把12个圆片平均分成2份,所以每一份都可以用1/2来表示。

师:大家对1/2的理解很到位!那么你能根据1/2意义,说说写1/2时,应先写什么吗?为什么?

生2:应先划分数线,表示把一个整体平均分,再写分母2,表示把12个圆片平均分成2份,最后写分子1,表示这样的一份数。

师:看来,分数线表示把一个整体平均分,分母表示一个整体平均分的份数,分子表示有几份这样的数。

师:现在,谁能把自己创造的分数与大家分享?

(学生上台演示,边贴圆片边叙述,并板书1/4、1/3、2/6、3/4、1/12等分数)

师:大家发现的分数可真多!老师也从12个圆片里发现了一个分数——1/5,可能吗?

(课堂顿时热闹起来,大家议论纷纷,畅所欲言)

生3:12个里不可能创造出1/5,因为12个圆片不能平均分成5份。

生4:可以表示出1/5。把12个圆片先分成5小份。这样,每份一样多,都是两个圆片多一些,用分数表示就是1/5。

师:看来:12个圆片平均分,每份的圆片数不一定是整数,只要分得每份一样多,就能用分数表示。那么,12个圆片里还能创造出哪些分数?

生:1/7、1/9、1/11……

思考:

追问是课堂教学中对话策略的重要组成部分,是教师对学生答问结果表现出来的问题的一种有效处理方式,是对学生回答的进一步提问。在目前课堂里,还有很多“再想想,你还知道了什么”“就这一种吗?” 等低效甚至无效的追问方式。就如案例A中只是“还有吗”“是什么”的简单的重复,使得学生的回答仅是几种方法的重组。

而案例B仅简简单单“大家发现的分数可真多!老师也从12个圆片里发现了一个分数----1/5,可能吗?”教师鼓励学生思考该怎样表示,这样就能让学生克服思维定势的影响,认识到每份数除了整数外还可以是非整数,一个整体可以创造出多个分数,从而促进学生深入理解分数的意义,让学生对分数的建构:变“肤浅”为“深刻”。有效的追问对于学生明确自己的想法,提高学生思维活动的敏捷性、深刻性,构建完整的知识体系具有独特的价值。

二、由“用你喜欢的方法计算”引起的思考

《乘法运算定律》教学片断:

师:春游是一件非常令人高兴的事情,红旗小学要组织同学们去春游,我们一起来看一看。打开课本,请同学们认真观察这幅***,并读一读***上面的文字。你发现出哪些数学信息?

生1:学校组织102名这几年级师生去春游。

生2:平均每人的费用是25元。

师:共有102名师生去春游,每人需要25元,同学们算一算,他们这次春游一共需要多少钱呢?请同学们用自己的方法试算一下吧!

(学生在本子上算,教师巡视了解情况。)

师:谁来说说你是怎么算的?结果是多少?

生1:用竖式计算,结果是2550元。

生2:先算100人多少钱,再算2人多少钱,最后相加。

师:还有其他的方法吗?

(学生无语,教师预设的第三种方法:用乘法分配律计算并没有出现。) 师:刚才有位同学说先算100人多少钱,即:100×25=2500(元),再算2人多少钱,即2×25=25(元),最后相加。这是不是把102分成100和2,如果在这里加上小括号(100+2),然后用我们的学过的乘法分配律……(学生恍然大悟。)

师:我们用不同方法计算出了102名师生春游需要多少钱,在这几种不同方法中,你认为哪种方法最简便?为什么?

生1:我认为采用乘法分配律的方法比列竖式的方法更简便,因为把102分成100和2,再用100乘25,2乘25,这两个积都可以口算,而竖式计算比较麻烦一些。

生2:我认为第二种方法也不错,100乘25很好算,得2500,2乘25得50,然后相加,直接就可以算出结果了。

生3:我认为第二种和第三种方法是一样的,都是把102都看成100和2,先分别乘再相加,只是算式的形式不一样,用乘法分配律只用一个式子,更简便。

师板书略。

处理方案一:

师:很不错,同学用多种方法在解决了这道题。

师:在这次春游活动中的102人中,有4位老师,98名学生。请你算一算学生一共需要交多少钱?用你喜欢的方法计算。

生:98×25=2450(元)

几乎没什么学生敢尝试用乘法分配律。

处理方案二:

师:在这次春游活动中的102人中,有4位老师,98名学生。请你算一算学生一共需要交多少钱,你会用比较简便的方法吗?快试试看。

(学生想了多种的计算方法)

师追问:来看看这几种方法,你认为哪种方法更简便?为什么?

(生多种回答略)学做到生自然而然择优入用。

乘法分配律教案范文8

“猜想验证法”是人类探索未知的一种重要思维方法。它是教师指导学生依据已有的经验,做出有一定根据的推测性猜想,然后再通过验证,发现新问题,并在解决的过程中,发展创新思维,最终完善猜想,发现规律的学习方法。那么,教学中如何渗透猜想验证的思想方法呢?笔者以“乘法分配律”为课例进行了尝试与探索。

【案例描述】

片段一:创设情境,引发矛盾,大胆提出猜想

(师出示竞赛题,进行男女对抗赛)

(三轮比赛后,都是女生领先)

师:三轮比赛中,女生不仅速度快而且正确率高,以绝对的优势领先于男生,大获全胜!(许多男生很不服气,紧盯着竞赛题,大喊不公平。)

师:(装作迷惑不解的样子)怎么不公平?每组的两道算式都是由相同的三个数组成的,结果也相同啊?

一男生抢答道:虽然结果相同,但女生的题正好凑成了整十、整百,再乘一个数太简单了。我们男生的题却很复杂,需要先乘再加,经过多步计算才能得出结果!

(学生普遍认可这一观点)

师:看来大家都认为不公平!那么这三组简单的算式之间是不是还隐含着什么联系呢?

生:那是不是任意两个数的和乘一个数,都可以把这两个加数分别乘这个数,再把积相加,结果都相等呢?

师:大胆的猜想!大家觉得呢?

(生持不同意见)

师:那接下来我们怎么办?

生:举例验证吧!

(大家一致赞同,自己尝试举例,然后小组合作交流)

【分析】两组计算题的比赛都是女生获胜,男生强烈感受到比赛的不公平,由此引发了矛盾,使学生急于找出两组算式的不同,从而大胆地提出猜想。

片段二:全面举例,层层递进,运用反例验证

各小组交流所举例子,初步得出结论,任意两个数的和乘一个数,和把它们分别乘这个数再相加,结果都相等!精彩片段如下。

2组补充:我们组举的例子和大家基本相同,有一个例子是用大一点的数进行验证,(2000+3000)×8=2000×8+3000×8,结果都等于40000。

快嘴的张文来不及举手,抢答道,老师,我想到还可以用分数举例。

几乎是在同时,王佳平也迫不及待地发言,还可以用小数举例呀!

师:大家的思考越来越有深度了。看来举例验证时,例子要全面,不仅可以用整数举例,还可以用分数、小数举例。那同学们想想看,是不是在验证一个结论时所举的例子越多,越能证明猜想是正确的?

思维敏捷的王青发言,我觉得所举的例子当然是越多越有说服力,可例子是无数的,永远也举不完。如果我们能发现一个反面的例子,证明这个猜想是错的,就可以得出最终的结论了。

师:(赞赏)看来,举例验证猜想,还有不少的学问啊!王青同学为我们的思考指出了一个新的方向。同学们,你能举出反例吗?刚刚的验证过程中有没有谁的验证结果是不相等的!

(学生摇头,表示困惑)

【分析】这一环节是教学的重点,学生不仅通过验证得出结果,而且意识到在举例论证时例子要全面,可以用整数、分数、小数举例。尤其是运用“反例验证”,让学生学会用辩证的眼光来看问题,为提高学生的探究能力提供了一种新的思考方式。

片段三:转换角度,提升思维,数形结合分析

师:其实,我们还可以尝试换角度思考问题!一起来看!你能用不同的方法表示出长方形的面积吗?你想到了什么?

生:(a+b)×c或者a×c+b×c。

生(恍然大悟):这两个算式都表示出了长方形的面积,结果肯定相等。

(课堂上一片欢呼,学生茅塞顿开)

师:精彩极了。运用数形结合的方法进行分析!现在我们可以肯定地说这个规律确实是成立的,它的名字是――乘法分配律。

师生:(总结)看来,在验证一个猜想时,换角度思考问题也是不错的方法。

……

【分析】我国著名数学家华罗庚教授有这样一段名言,“数缺形时少直观,形少数时难入微”。在学生苦思冥想,找不出反例时,适时抛出长方形面积公式的计算,引导学生转换角度思考。由数想形,以形助数,数形结合,促进学生思维水平的提升。

【实践反思】

一、激兴趣,提猜想,拓宽思路

猜想是数学思维的一部分,它包含了理性的思考和直觉的推断,能使学生获得更多的数学发现的机会。运用猜想可以营造学习氛围,激发学生积极的思维和饱满的热情,正如牛顿所说,“没有大胆的猜想,就没有伟大的发现”。那么,小学数学课堂教学中如何引导学生猜想呢?

1.设置问题情境

正如上述案例中,新课伊始,我通过创设情境,计算竞赛引发冲突,从而使学生产生强烈的求知欲望,提出猜想:是不是任意两个数的和乘一个数,都可以把这两个加数分别乘这个数,再把积相加,结果都相等呢?并努力证明自己猜想的正确性,主动参与数学知识探索的过程。

2.联系旧知,寻求突破

如,复习平行四边形的面积推导过程以后,让学生猜想三角形或梯形的面积计算方法该怎样推导,引导学生运用旧知作新的猜想。再如,教学“3的倍数的特征”时,按常规学生很难猜想到规律。虽然有2的倍数,5的倍数做为旧知,学生也按此思路进行猜想,但几次试验未果。这时,让学生交换3的倍数中数字的位置,再引导猜想。在旧知基础上,发展学生的创造性思维,引导学生想猜想、会猜想、勤猜想,培养学生合理猜想的习惯。

3.结合生活实际

数学来源于生活,若能结合现实生活,引入数学课堂,学生会有更多的兴趣进行猜想。在教学“平均数”时,有这样一个问题:小明身高1.2米,河的平均水深是1米,小明过河有危险吗?学生从理解日常生活中“平均”概念入手,进行猜想,很轻松地进入了自主探究阶段,最后都真正地掌握了“平均数”这个重要的概念。

引导学生猜想的依据还有很多,但只要教师善于引导,给予鼓励,使学生猜之有趣,必将成功激发学生的探究兴趣。

二、重验证,悟方法,提升思维

猜想是数学思维中的一种基本思维方法,“数学事实首先是被猜想,然后才是被验证”。只有猜想没有验证,那是空想;只有经过检验或验证,才能得出科学的结论,这也是数学严谨性的体现。猜想验证的过程,也就是学生主动参与数学知识的探索过程。有的猜想通过简单计算和操作马上就可以验证。如“三角形任意两边之和大于第三条边”这一猜想,学生只需简单计算,就可以得出正确的结论;而有些猜想则需要更深层次的体验,需要运用到相关的数学方法。

上述“乘法分配律”教学案例中,在学生提出猜想后,教师没有急于给出答案,而是引导学生自己去寻求答案。“啊,还可以用分数,小数举例啊!”“如果能举出一个反例,就可以这个猜想。”“这两个算式都表示出了长方形的面积,结果肯定相等。”……从最初猜想的提出,到后面的合理验证,学生不断迸发出思维的火花。运用反例验证,让学生学会用辩证的眼光来看问题,发展了学生的批判性思维。而数形结合的分析方法,由数想形,以形助数,架起形象思维和逻辑思维的桥梁,化难为易,化繁为简,化隐为显,使问题简捷地得以解决。相信经历了这样的思辨过程,学生对乘法分配律理解必将更全面、更透彻。

乘法分配律教案范文9

【关 键 词】 小数乘法;以学定教;整数乘法;改进

【作者简介】 田兴,绍兴市柯桥区华舍小学,小学高级教师,绍兴县十佳青年教师标兵。研究方向:小学数学教育,学校行***管理。钱建***,绍兴市柯桥区华舍小学,中学高级教师,绍兴市教坛新秀。研究方向:小学数学课例研究。

中***分类号:G623.5 文献标识码:A 文章编号:1671-0568 (2014) 31-0120-04

一、问题的描述

“由教导学”或“以学定教”一直是教学研究的两条重要视线。现代教学论认为,教师的教学主导性应该建立在学生学习主体性基础之上,由“学法”研究“教法”可以使教学更加有效。我们通过研究错因,分析学情,有效确定教学的方法和策略,让学生从“未知”向“已知”自然顺利地过度。

笔者曾参加一次教研活动,听课内容是人教版五上年级《小数乘整数》,学生在练习时普遍出现这样的问题(如***1),教师讲道:小数乘整数的计算方法,是把小数乘法转化成整数乘法计算,最后再处理积的小数点,因此竖式计算的中间过程应该是两个整数,而不是像12.8那样的小数。随即要求学生把这个小数点擦去(如***2)。尽管这样强调,还是有不少学生在作业中出现了像***3类似的问题。

二、问题的分析

1. 学生访谈――不能自圆其说。为探明原因,笔者根据***3做了学生访谈。

师:中间过程你为什么还是在写小数?

生1:因为是小数乘法呀,我觉得写小数才算是小数乘法,写整数就不是小数乘法了。

生2:我觉得像***2肯定不对,128+32怎么可能等于44.8呢?

师:像你这样也不对呀,12.8+3.2也不等于44.8呀。况且你上下两个数位也没对齐,44.8怎么算呀。

生2:44.8我不是根据上面算出来的,而是因为因数3.2扩了10倍,所以积要缩小10倍。

从访谈中可以知道,学生的想法很简单,有一定的合理成份。但访谈也发现他们的思维角度是不一样的。有的学生观察竖式是从上往下,正是这种观察使他们觉得“有问题”。有的学生算出448后,不再理会计算过程了,根据推理得出结果。但当引导他们进行上下观察时,他们又觉得很不可思议,已全然不顾数位对齐的规则,很难自圆其说。

2. 教研组分析――峰回路转。在计算过程中还是出现小数是由于学生还不能够完全把小数乘法转化为整数乘法计算,这可能与教师的教学方法有关。我们依据的是运算概念,即积的变化规律进行教学的(教材示例如***4)。这样扩大、缩小的过程可能还是比较抽象的,我们是不是能想想别的办法。

经过分析与文献查阅,利用数概念教学也是一种办法,把一位、两位……小数进行单位换算,转化成几个0.1,0.01……的形式,这样小数乘法与整数乘法就上位统一了,他们都是在求“几个几”,只是计数单位不同而已。如像0.2×3就是2个0.1×3=6个0.1,再利用几何直观(如***5)学生必定把目光锁定在整数部分了。这样一种新的教学思路就形成了。

令人遗憾的是,教研组用第二种思路设计的教学,还是出现了老问题。我们把目光重新转回到教材给出的示例(***4)。结果中的3.60是对于乘数是一位数――“5”来说的,如果乘数“5”改为“15”,那么这个3.60作为0.72×15其中0.72×5的第一步过程,为什么就不可以了呢(***6)?5的前面多了一个1(实际为10),那就在3.60的基础上继续做下去,怎么就错了呢?我们觉得这种分析与前面的学生访谈就比较匹配了。教材中只给出了乘数是一位数的示例,3.60作为一个结果,学生很容易把它想成是两位数乘法中的一步过程。所以真正的问题不是在于“把小数乘法转化成整数乘法”,而是在于“乘数是一位数与乘数是两位数”在书写过程中的不同。因为所有乘数是一位数的“小数乘整数”学生都能做对,当变成两位数就错误百出了。

3. 深度追问――柳暗花明。造成学生心理困惑的根本原因是什么?不经意间,笔者听到了竖式笔算的过程口述,对“等于”、“横线”引起了注意。在学生心目中,竖式中的一条横线就是一个等号。在一步计算时,横式与竖式是一一对应的,许多教师就把0.72×5的竖式过程读成零点七二乘五等于三点六零,这样小数乘整数,结果还是小数。在两步计算中,0.72×15竖式过程(***7)写成了两个整数36 0与72,把这两个整数相加结果却“等于”一个小数(答案),在他们眼里是有违常理的。所以他们会非常自觉地在竖式过程中添上小数点以弥补心理的不安,即使是乱点小数点也总要比不点强。因此,出现像前面***3那样的错误也就不足为奇了。

那么竖式中的一条横线是不是“等于”符号?笔者访谈了几位教低年级的数学教师,他们都认为就是“等号”,以前在教学中他们都是这样说的。这种认识在一步计算时似乎发现不了问题,但两步以上的竖式问题就出来了。笔者在人教版新课标教材第三册教科书P 27找到了一个连加示例(***8):如果竖式中的横线是等号,那么把竖式改写成横式就变成28+34=62+22=84,这也是学生常犯的一种错误,因为这三部分是不相等的,在连减或加减混合竖式计算中也如此。如果“_____”是“等号”,那么它应该有一种***性而不是依附于某种“背景”。当我们把竖式中的各种成份都隐去,只剩下“_____”时,再让大家来认一认,恐怕没有人会认为它是“等号”了。看来这条横线只是表示一种间隔或是一种趋向(***9)。

三、在思考中不断改进

顺着上面的思路来,通过对比横式中的“连等号”,让学生重新认识竖式中“_____”这个符号的意义,对于突破教学难点似乎是一种办法。因为至少从理论上我们可以自圆其说了。但是对于刚学完四年级小数加减法竖式笔算升到五年级的学生,“小数点对齐”,“数位对齐”观念实在太根深蒂固了,实际上他们从二年级正式学加减法竖式时就开始有这样的强化了。即使是列一个普通的3.5×3的竖式,在他们的心目中也应该是3与3对齐。笔者也拿这个题目“考查”了办公室同事(有十年教龄的英语老师),她竟然也这样列式。况且依照上述的教学办法又会形成一个很有意思的怪论。0.72×15竖式计算我们一般是这样说的:把零点七二的零点(去掉)不看,记在心里,先用七十二乘十五,乘得的积缩小一百倍进行还原。再看四年级孩子解答多步计算题(***10-11),问他为什么这样算?他说先不去管15,把它记在心里,算出66后,再把它写出来。问五年级孩子解方程的第一步和第二步时“3”去哪里了?第三步怎么突然又出来了?他会说,我把3先记在心里了。 当四年级的时候我们不允许他把“15”记在心里,五上年级学小数乘法时,我们需要把小数记在心里,而后面单元的解方程,我们又不允许他把“3”记在心里了,学生简直是懵了。

在传统教学中,我们根据积的变化规律先得出44.8这个结果(***12),然后再去反思竖式的中间过程该怎么写,在这个环节中教师通常只能实行接受性教学,让学生记住书写规则。而这样的教学所带来的后果是学生在解释原因时,还是不明不白。只会讲“我们老师是这样说的”。

有效的教学行为应该是顺其自然,以学定教。笔者主张废弃小数乘法竖式笔算,直接用整数竖式计算,进而推算小数乘法结果(如***13),理由如下:

1.改进后的教法属于“老朋友解决新问题“,学生更觉亲近。对大量学生的调研表明,在没有任何教学暗示的前提下,不少孩子是可以用笔算“正确解答”一位小数乘整数的“积”,尽管上下位置对得不一样(***14)。在说明算理的时候他们也会自觉运用积的变化规律。并且统一用整数竖式笔算推算小数乘法结果,所用的数学思想方法也是转化,并没有发生变化。

2.改进后的教法思维与操作相和谐,视觉更清晰。对竖式的计算过程我们通常是通过横式进行算理分析的。例如在整数乘法的竖式过程中(如***13),32×14根据乘法分配律可以得到32×4+32×10=128+320=448,这个过程与竖式相匹配。但是当小数出现时,就变成似是而非了(***15)。从算理来讲,3.2×14=3.2×4+3.2×10=12.8+32,应该写12.8“却不让写”,这是条件算理与竖式过程不匹配。当两个“整数”相加却最后变成了小数,这是竖式过程与结果不匹配。改进后的教学方法避免了因思维与操作在视觉表现上过于胶着而带来的算理不清,计算过程显化、清晰。算到最后根据整数计算结果推算小数计算结果也是原来传统做法的必经之路,并没有增加难度。

3.改进后的教法更加突出数学本质。我们可以从单位转化的角度进行理解:3.2×14=32×0.1×14=32×14×0.1=32×14×0.1 原本的小数乘小数到最后就转化成了整数乘整数,然后再添加一个单位。

如果从积的变化规律角度进行分析,稍加点拨,学生就能自然地得出小数乘法的结果,这种能力表现为在横式推算上他们觉得更轻松。例如当告知32×14=448,要求如下答案,学生一般总能搞定: “ 320×14= 32×1.4= 3.2×14= 32×0.14= 0.32×14= 32×0.014=”一些中上生甚至可以在《小数乘整数》第一节课结束后就能推算像“3.2×1.4, 3.2×0.14”小数乘小数的计算结果。一道乘法算式能解决那么多的小数乘法题目,直接用整数乘整数解决小数乘法,更加可以突出数学本质。

四、写在最后

笔者根据这个观点进行教学设计,在多个班进行试教都比较成功。听课教师纷纷表示:

1.这样教学生是真懂了,以前的教学只是记住了教老师的要求。

2.这样做突出了心算,有一个好处是学生对于去掉小数末尾的0会更主动自然一些。如***17:当算出270以后,学生紧跟着是一步是除以10。这样原本末尾有0的答案都会因除以10,100…自动抵销掉。所以去掉小数末尾的0对于“教”的要求就少了许多。按照传统的教学,学生还会有一种非常典型的错误:先去掉了末尾的0,再添小数点。而按照本案教学,这种问题将不复存在。(这在笔者的课堂实践中得到了充分的证明)

3.考试怎么办?现行课本,作业本中还是传统的题目(如***18)那样,学生可能就不会做了。

转载请注明出处我优求知网 » 乘法分配律教案集锦

学习

业务学习工作计划模板

阅读(25)

本文为您介绍业务学习工作计划模板,内容包括业务工作学习计划安排表,业务工作计划ppt模板。三、学习培训内容主要学习培训中共中央***《关于全面加强人口和计划生育工作统筹解决人口问题的决定》、《中华人民共和国人口与计划生育法》、

学习

城镇经济与管理论文模板

阅读(22)

本文为您介绍城镇经济与管理论文模板,内容包括农村经济管理毕业论文,关于农村经济管理的论文范文。评价指标体系评价城镇化建设与经济发展之间是否相协调,首先要对两个子系统的评价指标体系进行选取,本文按照客观性、科学性、完备性、一致

学习

系统考察报告模板

阅读(22)

本文为您介绍系统考察报告模板,内容包括系统考察报告,考察报告网站模板范文。上海精神卫生中心从XX年采用用友的his系统,运行5年以来反映比较稳定,用友软件采用产品化模式,由于上海精神卫生中心是专科医院特殊需求较多,所以进行了大规模的2

学习

化工行业发展论文大全

阅读(27)

本文为您介绍化工行业发展论文大全,内容包括化工行业论文,中国化工行业发展趋势论文。诚信,即:言必信,行必果,体现兑现承诺的真诚,这是人取信社会的根本,是企业可持续发展的内在保证。友善,是一种源于内心的宽容,富有爱心和社会责任感,体现人与人

学习

诗歌创作论文大全

阅读(22)

本文为您介绍诗歌创作论文大全,内容包括诗歌创作论文,诗歌鉴赏论文1500字。一、律诗兼律文:《论语诗》的文体属性王夫之云:“乐语孤传为诗。诗抑不足以尽乐德之形容,又旁出而为经义。经义虽无音律,而比次成章,才以舒,情以导,亦所谓言之不足而长

学习

建筑工程师论文大全

阅读(23)

本文为您介绍建筑工程师论文大全,内容包括建筑工程师论文范文在哪里,建筑类高级工程师论文发表要求。(二)校外专业导师队伍的建设聘请具有丰富实践经验的并具有副高级以上职称的土木行业的专业人员作为校外研究生指导教师,并开展联合培养制

学习

学校五四红旗团委集锦

阅读(28)

本文为您介绍学校五四红旗团委集锦,内容包括学校五四红旗团委新闻报道,学校五四红旗团委事迹。2、突出重点,提高团建整体水平。“五四红旗团委”重在建设。要重点抓好以下几方面的建设:(1)抓民主选举,加强班子建设。要结合***组织的整顿和建

学习

幼儿园托班班级总结模板

阅读(27)

本文为您介绍幼儿园托班班级总结模板,内容包括幼儿园月底托班班级总结,幼儿园托班班级总结汇报。2、自理方面提高较快,学习习惯正在养成中。孩子生活自理能力较弱,在这方面老师花费了大量的时间和精力来培养幼儿的一日生活常规的培养上,如:

学习

作业汇报模版集锦

阅读(32)

本文为您介绍作业汇报模版集锦,内容包括作业汇报模版,作业汇报范文大全。二、解决方案虽然该系统只是针对天津滨海职业学院招生设计的,但它实际上是针对清华同方招生录取系统的二次开发,适用任何一所采用清华同方招生录取软件的高校。考虑

学习

企业质量管理论文大全

阅读(26)

本文为您介绍企业质量管理论文大全,内容包括信息系统项目质量管理论文,机械产品加工中的质量管理论文。世界万物生于有,有生于无。意识反作用于物质。提高企业产品的质量和质量管理水平的关键是要转变质量观念,即转变质量观、责任观与控制

学习

高校计算机论文大全

阅读(22)

本文为您介绍高校计算机论文大全,内容包括高校计算机论文,计算机课程论文范文大全集。二、高校在“互联网+”的形势下进行计算机教学设计的策略(一)计算机教学设计要具有针对性。“互联网+”发展如火如荼的今天,高校的计算机教学设计要具

学习

副科长转正工作总结模板

阅读(26)

本文为您介绍副科长转正工作总结模板,内容包括副科长转正后晋升工作总结,科长转正工作总结。接着,常务副校长林琨智公布了2020年度技能竞赛和教科研获奖情况,并鼓励受表彰的学生和老师在新的一年里继续努力,再创佳绩,希望全体教师投身到教科

学习

包车工作方案集锦

阅读(25)

本文为您介绍包车工作方案集锦,内容包括公司包车方案范文,包车工作方案。为了提高职工安全理论知识水平、实践操作能力以及对事故的应急处理,对职工进行制氢安全基础知识培训、实用性专业技能培训,使其更好的抓好安全生产,服务于生产的目的

学习

小型公司年会策划方案模板

阅读(27)

本文为您介绍小型公司年会策划方案模板,内容包括年会流程安排及策划方案,年会策划创意方案ppt。三、年会地点********酒店钻石厅【年会目的及意义】1、对20xx年公司发展成绩总结,以及新年度计划、方向、目标等。2、加强员工之间的交流,增

学习

中班美术教案模板

阅读(25)

本文为您介绍中班美术教案模板,内容包括幼儿园中班美术教案大全,中班公开课美术优秀教案。“档案夹中收集美术学习全过程的重要资料,包括研习记录、构想草***、设计方案、美术作业、相关美术信息(文字或***像资料等)、自我评价以及他人评价

学习

道德与法治教案模板

阅读(22)

本文为您介绍道德与法治教案模板,内容包括道德与法治课教案模板,道德与法治教案完整版。(一)教师方面虽然当前阶段在教育整体中已经不断地推进新课改,但是教师在具体的教学之中依然存在很多不足。首先,有些教师教育观念没有更新。在实际的课

学习

初中英语教案集锦

阅读(24)

本文为您介绍初中英语教案集锦,内容包括初中英语教案网,初中英语九年级教案。一直以来我们学习都是听、说、读、写样样注重的,要想把某一学科学好,还必须认识到它的重要性,这样才能有持久的动力和耐力去坚持学习并越学越有劲,对英语学习来说

学习

鸟的天堂教案

阅读(26)

本文为您介绍鸟的天堂教案,内容包括鸟的天堂教案逐字稿,鸟的天堂作者。鸟的天堂教案作为一名教学工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?以下是为大家整理的鸟的天堂教案,欢迎大

学习

木兰辞教案大全

阅读(29)

本文为您介绍木兰辞教案大全,内容包括木兰辞十分钟教案,木兰辞课堂实录。研究目的:通过对两部《花木兰》的影视改编作品的对比分析,来研究中西方不同改编者究竟有何审美倾向及价值取向。二、调研资料情况1.谢孟,中国古代文学作品选(上)[M].北

学习

咏雪教案集锦

阅读(25)

本文为您介绍咏雪教案集锦,内容包括七年级部编版语文咏雪教案,世说新语二则咏雪教案。诗歌的标题你不能不注意。诗歌的标题包含了作者要写的内容、态度观点或寄托的思想情感。全国一卷《咏素蝶诗》中“咏”是歌咏、吟唱的意思,包含了作者

学习

幼儿游戏教案大全

阅读(26)

本文为您介绍幼儿游戏教案大全,内容包括幼儿民间游戏打纸包教案,幼儿小班游戏教案100篇。2.能听到信号向指定方向跑,增强跑的能力。3.对球类运动感兴趣,乐意参加有游戏。【活动准备】幼儿每人一个皮球。【活动过程】一、开始部分1.热身运

学习

牛和鹅教学设计优秀教案优质

阅读(27)

本文为您介绍牛和鹅教学设计优秀教案优质,内容包括牛和鹅教案教案,牛和鹅10分钟试讲教案。牛和鹅教学设计优秀教案优质作为一位优秀的人民教师,就不得不需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。你知道什么样的