近似数教案

近似数教案20篇

作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?下面是精心整理的近似数教案,欢迎阅读与收藏。

近似数教案1

教学目标:

1使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

2使学生理解保留小数位数越多,精确程度越高。

3培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重点:用四舍五入法求小数的近似数。

教学难点:明白要保留的'小数数位里末尾的“0”不能去掉的原因。

教学用具:课件

教学过程:

一、复习铺垫:

(1)把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

3650≈()119360≈()24800≈()270900≈()

(2)下面的□里可以填上哪些数字?

32□645≈32万47□05≈47万

学生填完后,说一说是怎么想的。(回忆四舍五入法)

(3)整数可以用四舍五入法来求近似数,怎样求小数的近似数呢?也就是用“四舍五入”的方法保留一定的小数位。下面我们就用四舍五入法来求小数的近似数。[板书课题:求一个小数的近似数])

二、探究新知

(一).出示例题:

例1.李明在运动会中的跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?(要求:保留整数保留一位小数保留两位小数)

师:保留是什么意思?说说你对这个词的理解

让学生进行***思考,发表意见,说出结果及想法。

1保留整数

根据提示思考:

一找(),二看(),三()

学生***探索,小组交流,反馈后总结:一找个位,二看十分位,三五入.(板书:2.953≈2.95)

师讲解:保留整数,表示精确到个位。

(3)练习:0.999你会保留整数吗?

2、保留一位小数(根据提示思考)

(1)小组合作学习。

(2)组内交流,组长汇报交流结果。自己总结:(一找十分位,二看百分位,三入..)(板书:2.953≈3.0)

(3)师:近似数3.0末尾的0能不能去掉,为什么?(***思考指名发表意见)

①教师出示线路***:(课件出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高

问:刚才我们已知道“保留整数,表示精确到个位。”那么保留一位小数,表示精确到哪一位呢?

③练习:0.999你会保留一位小数吗?

3保留两位小数

近似数教案2

【学习目标】

1、理解近似数和有效数字及误差的意义;给一个近似数,能说出它精确到哪一位,它有几个有效数字

2、通过判断一个近似数的精确度和有效数字,培养把握关键字词,准确理解概念的能力

3、通过近似数的学习,进一步体会具体问题具体分析的辩证唯物主义思想,感受数学的价值,以及数学与生活的密切联系。

【学习重难点】

1.重点:理解近似数的精确度和有效数字.

2.难点:正确把握一个近似数的精确度及它的有效数字的'个数

【学习过程】

一、探究与学习

探究一:准确数和近似数(看课本,完成下列问题)

1.近似数:

准确数:

2.数学就在我们身边。下列各数那些是准确数?那些是近似数?

⑴1分钟有60秒 ⑵七年级四班有50人

⑶小明今年全家收入大约是5万元 ⑷小明身高1.57米

探究二:近似数精确度的两种表示方式

⑴一个近似数四舍五入到哪一位,就说这个数近似数( )到哪一位。

(小试身手)下列有四舍五入得到的近似数,各精确到哪一位?

①101 ②0.14 ③ 8.7千 ④0.0001

⑵有效数字

由四舍五入得到的近似数,从( )第一个( )起到( )止,所有的数字叫做这个近似数的有效数字。

(小试身手)下列各数有几个有效数字:

2651 ; 0.042; 9.0; 2.4万.

探究三:按要求取数的近似数

1.用四舍五入法,取近似数

①7.153247 (精确到万分位) ②8057 (精确到百位)

③1.363 (精确到0.01) ④20273(保留三个有效数字)

2.某市总人口为5630400人,请用四舍五入法按下列要求分别去这个数的近似数,用科学计数法表述出来,并指出近似数的有效数字。

⑴精确到千位 ⑵精确到万位

⑶精确到十万位 ⑷精确到百万位

3.近似数0.2和0.20有什么不同?

探究四:误差

1.在现实生活中,人们用( )与( )的差来表示近似数与准确数的接近程度,这个数就是误差。误差可能是( ),也可能是( )。

2.一件零件的直径标出(1502)毫米,是指这件零件的实际直径在( )毫米与( )毫米之间,当这个零件为149毫米时,误差为( )毫米。

二、达标训练

(1)近似数0.00203 精确到_________,有_____个有效数字,分别是_________

(2)近似数4.00789 精确到_________,有____个有效数字,分别是_________

(3)下列各数有几个有效数字,各是多少?

3.05 0.0410 101 1.50

(4)用四舍五入法把3.1415926按要求取近似数

(ⅰ) 取3个有效数字 (ⅱ)精确到千分位

(5)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,请用四舍五入法按下列要求分别取这个数的近似数,用科学计数法表示出来,并指出近似数的有效数字:

(ⅰ)精确到万位 (ⅱ)精确到百万位

三、小结反思

这节课我学会了: ;

我的困惑: 。

四、当堂达标测试

1.下列各数是准确数的为( )

A.七年级有800名学生 B.月球与地球的距离大约是38万千米

C.小明同学的身高大约是148厘米 D.今天的气温大约是8摄氏度

2由四舍五入得到的近似数0.010精确到( )位,有效数字有( )个,分别是( )。

3.用四舍五入法,按要求取近似数

0.3729526(精确到0.001) 4956(保留三个有效数字)

2500000(精确到万位)

4.某校一年级共有120名学生要出去旅游,应租用50座的客车( )辆

A.2 B.2.4 C.2.5 D.3

五、布置作业

近似数教案3

设计说明

学生在之前学习过求整数的近似数,已经掌握了基本的学***验。因此,在本节课的教学设计上注重体现以下几点:

1.创设生活情境,感受数学与实际生活的联系。

《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

2.注重类推,让学生经历知识迁移的过程。

求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

3.注重引导,让学生在探究中学习。

在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的'基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

课前准备

教师准备 多媒体课件 卡片

教学过程

⊙复习导入

1.复习旧知。

(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

986534 58741 31200

50047 398010 14870

(2)下面的□里可以填哪些数字?

32□645≈32万 47□905≈47万

学生填完后,引导学生说一说是怎么想的。

2.导入新课。

师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

设计意***:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

⊙探究新知

1.课件出示教材例1情境***。

从***中你获得了哪些数学信息?

(豆豆的身高是0.984 m)

2.探究求近似数的方法。

(1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

(2)你是怎样得出豆豆身高的近似数的?

生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

教师板书: 0.984≈0.98

小于5,舍去

(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

教师板书:0.984≈1.0

大于5,向前一位进1

近似数教案4

教学目标:

1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量.

2、能根据实际问题的需要四舍五入取近似值.

3、对于由四舍五入法得到的近似数,能说出它精确到哪一位,它们有几个有效数字,是什么.

教学重点:

按要求取近似值,能说出它精确到哪一位,有几个有效数字,按精确到哪一位的要求,四舍五入取近似值.

教学难点:

指出较大数位的近似数的有效数字.

教学过程:

一、创设情景引入

出示投影:78页彩***,学生组内合作讨论、交流解决问题.

二、新课:

(一)通过学生的活动,加深对近似数的理解,并讲解例题1、2

(二)练习:

1、判断下列各数,哪些是准确数,哪些是近似数

(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()

(2)检查一双没洗过的手,发现带有各种细菌80000万个;()

(3)张明家里养了5只鸡;()

(4)1990年人口普查,我国的人口总数为11.6亿;()

(5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()

(7)圆周率π取3.14156.()

2.小明量得一条线长为3.652米,按下列要求取这个数的.近似数:

(1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

(3)四舍五入到个位____________.

一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.

在上题中,小明得到的近似数分别精确到那一位.

3、下面由四舍五入得到的近似数各精确到那一位

0.320__________;123.3__________;5.60____________;204__________;

5.93万____________;1.6×104_____________.

4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

(1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

5.把数73600精确到千位得到的近似数是_______________

精确到万位得到的近似数是_________________

6.近似数3.70所表示的精确值a的范围是()

(A)3.695≤a<3.705(B)3.6≤a<3.80

(C)3.695<a≤3.705(D)3.700<a≤3.705

7.下列数中,不能由四舍五入得到近似数38.5的数是()

(A)38.53(B)38.56001(C)38.549(D)38.5099

分析近似数8与8.0的差别

(三)讲解精确度、有效数字的概念:

对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.

如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

2、数0.8050精确到_______位,有_____个有效数字,是_______________

3、数4.8×105精确到_______位,有_____个有效数字,是_______________

4、数5.31万精确到_______位,有_____个有效数字,是_______________

四、讲解例题,解后反思,加深对相关知识的理解.

练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

(1)精确到10㎏是______㎏,有______个有效数字,它们是________

(2)精确到1㎏是______㎏,有______个有效数字,它们是________

(3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

五、小结:什么是有效数字?按精确到哪一位,求近似值时要注意什么?

六、作业:P83习题1、2

近似数教案5

教材分析:

“近似数”是北师大版小学数学第七册第一单元“认识更大的数”中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法“试商”的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。

学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用“四舍五入”法来求大数的近似数。但是大部分学生对“四舍五入”法只是一个模糊的认识,对于“四舍五入”法具体是什么,它的道理是什么,什么情况下运用“四舍五入”法都不是十分清楚。

四年级的学生已经进入了小学中年级段,具有一定的学***验和合作学习的能力。

教学目标:

1、通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。

2、借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。

3、经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。

教学重点:

经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。

教学难点:

经历探索求近似数的过程。

教学方法:

合作学习法分析归纳法

教学策略:

小组合作情境创设

教学过程:

一、情境创设,分类感受精确数和近似数。

1、观看一段国庆60周年***视频,说一说有什么感受?

师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。

2、课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。

3、仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?

组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。

师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?

学生用自己的语言说一说。可能会说是准确的数,估出来的数。

师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。

4、读一读以下的数据,哪些是精确数,哪些是近似数吗?

小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。

5、你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。

师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。

【设计意***:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】

二、合作学习,自主探究。

(一)借助数线,直观感受“四舍五入”法求近似数的道理。

1、师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称“近2万平方米”,这里的“2万”是如何得到的?

同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。

2、结合直观的数线***,分析“18000平方米”称为“近2万平方米”的原因。

师:18000介于整万数1万和2万之间,由于18000千位上是“8”,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数“2万”。

介绍18000约等于2万,用“≈”表示,写作:18000≈2万全班读一读。

3、在数线上标出11000,120xx,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。

师:15000这个数约等于多少呢?

学生可能觉得1万可以,2万也可以,因外它刚好在中间。

师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。

课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。

师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。

学生汇报交流,学生可能会发现以15000为分界线,11000,120xx,13000,14000接近1万,16000,17000,18000,19000接近2万。

教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。

教师借机在黑板上板书:0、1、2、3、4舍;5、6、7、8、9入,介绍“四舍五入”法。

【设计意***:结合数线***,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】

(二)合作学习,探究“四舍五入”法求一个数的近似数。

1、参加国庆***的精确人数是233482人,在下***中找到这个数的`大致位置,说一说“约20万人”,这个数是怎样得到的?

合作要求:1、同桌2人一起学习,共同完成学习任务。2、学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。3、组织简单、清晰的语言准备全班汇报。

教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。

2、全班交流。生可能想法:在数线***上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数“33482”舍去变成5个0,得到近似数20万。

请多组的学生表达自己的想法,只要说得有道理,给予鼓励。

3、教师小结:四舍五入到十万位,关键看万位。

4、如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。

5、引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?

【设计意***:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生***思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】

三、巩固练习

1、读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)

鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。

2、华山是我国的五岳之一,海拔约2155米,在下***上标一标,四舍五入到百位大约是多少米?

学生***完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。

3、按要求填表。

提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。

【设计意***:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】

四、课堂总结

这节课你学到了什么?请学生说说这节课的收获。

师:这节课我们经历了探索求近似数的过程,会用“四舍五入”法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。

板书设计:

近似数

0、1、2、3、4舍18000≈20000

四舍五入法

5、6、7、8、9入233482≈200000

近似数教案6

教学目标:

1.使学生掌握求一个小数的近似数的方法.

2.能正确地用“四舍五人法”求近似数.

3.使学生理解保留小数位数越多,精确程度越高.

教学重点:

使学生理解取近似值对结果的精确程度的影响.

教学难点:

理解保留小数位数越多,精确程度越高.

教学方法:

探究交流法

教学准备:

多媒体课件

课时课型:

1课时 新授课

教学过程:

(一)、创设情境

1.出示情境***,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”

2.引出近似数,复习整数求近似数。

(二)探究交流

1.出示情境***,在实际应用小数时,往往也没有必要说出它的准确数,只要它的`近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。

(根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)

2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。

3、强调取近似数的要求不同表示方法

4、小组探讨1与1.0的精确度

5、引导通过线段***理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。

6、总结:刚才是利用什么方法求0.984的近似数?***完成想一想后在小组中交流,找不同说原因。

(三)巩固练习

1、选择,学生***完成,指名汇报

(1)保留( )位小数,表示精确到十分位。

①一位 ②两位 ③三位

(2)如果要求保留三位小数,表示精确到( )位。

①分 ②百分 ③千分

2、求下面小数的近似数

(1)保留两位小数

0.256 12.006 1.0987

(2)精确到十分位

3.72 0.58 9.0548

(选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)

3、按要求填出表中的近似数

4、拓展题

四、全课总结

1、数学课将结束了,你有哪些收获?在哪方面还需努力?

2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

课后作业: 1.从课后习题中选取;

2.完成练习册本课时的习题

板书设计:

求一个小数的近似数

0.984≈0.98 0.984≈1.0 0.984≈1

小于5,舍去 大于5,向前一位进1 大于5,向前一位进1

表示近似数的时,0不能去掉

课后反思:

近似数教案7

教学目标:

知识与技能:1、通过复习,巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。2、进一步培养学生的数感。

过程与方法:使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。

情感、态度和价值观:培养学生的反思意识和合作精*。

重点:数的概念、读写数的方法、改写和省略的方法

难点:数中间和末尾有0的读写法、用四舍五入法求近似数

教具:题卡

教学过程:

  一、复习整理:

1、本节课对多位数的认识这部分知识进行整理和复习。板书课题:复习多位数的认识。

2、打开数学书看第一单元的内容,看看本单元都学习了哪些内容?

哪个小组愿意汇报你们组的交流情况?

老师指导并归纳,总结在黑板上。

问:你认为本单元哪些内容比较难?你最容易出错?

二、复习知识点

1、复习数位顺序表

1)什么叫数位、计数单位、数级?

2)每相邻两个计数单位之间有什么关系?

10个一万是十万

10个十万是一百万

10个一百万是一千万

10个一千万是一亿

3)每相邻的两个计数单位之间的进率都是十,这种计数方法叫十进制计数法。

4)自然数的认识

表示物体个数的1、2、3、4、5、6、7、8、9、10、11都是自然数,一个物体也没有,用0表示,0也是自然数。

问:最小的自然数是几?有没有最大的自然数?自然数的`个数是无限的还是有限的?

2、多位数的读写法的方法是什么?

3、改写和省略的方法是什么?

4、如何比较数的大小?

三、练习内容

1、读出下面各数。4231579、30050082、3960400000、7000700070、700300009、26740020000、315400000、50708000000。

2、写出下面各数

三千零三万三百零三、一千零五十万四千零二十、二十亿零七百六***、三百一十亿七千零八万三千零四十。

3、改写成以万做单位的数。80000、9000000、47000000、200320000。

4、改写成以亿做单位的数。325600000000、48000000000

5、求近似数

1)16483520、9528641、799000、380800、8396000(省略万后面的尾数)

2)2709546312、983536478、89970804758(省略亿后面的尾数)

6、比较大小

1650010○16500100;350020○530020;2509200○2509000;6309607○670630。

7、用6、3、8、9和5个0按要求写出九位数。

1)最大的数;2)最小的数;3)一个0都不读的数;4)只读出一个0的数;5)要读出2个0的数;6)约等于3亿的数;7)约等于10亿的数。

四、这节课复习了什么?还有什么问题?

五、作业:练习二十一1、2、3

近似数教案8

教学目标

(一)能正确地比较亿以内数的大小。

(二)能把整万的数改写成用万作单位的数。

(三)能正确地写出省略万后面尾数的近似数。

(四)培养学生比较、分析的思维能力,养成良好的学习习惯。

教学重点和难点

重点:亿以内的数位顺序。

难点:数位与位数的区别,省略万后面的尾数求近似数的方法。

教具和学具

投影片。

教学过程设计

(一)复习准备

在下面○里填上>、<或=,再说一说你是怎样比较的?

999○1010 601○564 687○678

提问:

1.第一组两个数你是怎样比较的?

(三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

2.第二、三组数都是三位数,你是怎样比较的?

(两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

(二)学习新课

教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

1.出示例5。

比较下面每组中两个数的大小:

(1)99864和101010。

提问:

①两个数各是几位数?

②五位数最高位是什么位?六位数最高位是什么位?

9万多与10万多来比较,谁大谁小?

(10万多比9万多大。)

所以99864<101010。(板书)

由此来看,五位数与六位数比较,谁比谁大?

(六位数比五位数大。)

③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

(如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

出示第二组数:(2)356000和360000。

提问:

①这两个数各是几位数?

②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

③两个数左起第一位十万位上都是3,怎么比较?

(两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)

教师把第一个数356000的万位改成6,即366000和360000。

④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?

(两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)

启发学生逐步总结出完整的比较数的大小的方法。

提问:

①比较两个数的大小有几种情况?位数不同怎么比?

②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。

教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

练一练

(1)比较每组中两个数的大小,说说是怎么比的?

70080○70101 98965○100000

(2)按照从小到大的顺序排列下面各数。

40400 400400 44000 50004

指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:

可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

2.教学把整万的数改写成用“万”作单位的数。

出示50000,让学生读数。

教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

提问:万位在右起第几位?整万的数万位后面有几个0?

把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。

练一练

把下面的数改写成用“万”作单位的数。

(1)250000

(2)3200000

(3)1994年我国共生产自行车40450000辆。

其中第(3)题强调单位名称,即4045万辆。

3.教学求近似数。

教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。

4926 9375

提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)

教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)

出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。

(1)84380 (2)726310

出示第(1)题。提问:

(1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?

根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。

(2)千位上的数不满5,怎么办?

根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。

(3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?

出示第(2)题。

由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。

练一练

把下面各数万位后面的尾数省略,求出近似数。

(1)63599 (2)709327

(3)1994年我国大学毕业生有637000人。

其中第(3)题要强调写单位名称,即637000≈64万人。

(三)巩固反馈

1.总结性提问:

(1)今天我们学习了哪些内容?

(2)怎样比较两个整数的大小?

(3)怎样把整万的数改写成以万作单位的数?

(4)怎样省略万后面的尾数,求出它的近似数?

2.发展性练习。

指导学生做练习三的第5题。

第(1)题指导性提问:

(1)49999前面一个数是多少?把它写出来。

(2)49999后面一个数是多少?把它写出来。

第(2)题指导性提问:

(1)最小的一位数是几?最大的一位数是几?

(2)最小的两位数是几?最大的两位数是几?

(3)最小的三位数是几?最大的.三位数是几?

请***填写练习三第5题第(2)题。

3.思考性练习。

下面的□里可以填哪些数字?

19□785≈20万 60□907≈60万

9□8765≈1000000 9□4765≈900000

先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生***来填。

4.课后练习:

练习三第1,3,4题。

课堂教学设计说明

本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

本节课分三个层次,分两段提出课题。

第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

第二个层次是学习把整万的数改写成以万作单位的数。

第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。

根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。

板书设计

比较数的大小 求近似数

复习:

999○1010

601○564

687○678

4926≈5千

9375≈9千

例5 比较下面每组中两个数的大小。

99864和101010 356000和360000

99864<101010 356000<360000

50000=5万 1800000=180万

例6 把下面各数万后面的尾数省略,求出它的近似数。

(1)84380 (2)726310

8(4)380≈81万

72(6)310≈73万

近似数教案9

教学内容:第20—21页例9

教学目的:

1.使学生初步学会“四舍五入“法求一个数的近似数。

2.会写、会用“≈“。

教学重点:用“四舍五入“法求一个数的近似数。

教学难点:归纳求万以内近似数得方法。

教学过程:

一、调查汇报有关数据。

1.学生汇报调查情况。

2.根据学生的调查情况引入新课:

(1)教师根据学生的调查情况进行板书。

(2)通过实例向学生说明什么是近似数。

二、自主探索,领悟新知

1.教师在学生汇报的基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。

(1)教师出示数据。

(2)学生汇报说明自己的.想法,教师板书:

208 200 987 1000

927 900 892 900

517 500 671 700

439400 152 400

2.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。

(1)学生讨论汇报。

(2)教师根据学生汇报点拨引导。

在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?

(3)学生再`次讨论,教师巡视。

(4)汇报交流,总结方法。

(5)教师小结,提炼方法。

3.学习准确数和近似数的表示方法。

教师利用板书进行引导,教学约等号的写法和读法,完善板书。

4.反馈练习,巩固方法。

做第20页的“做一做”

三、总结交流,提炼方法

(1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。

(2)教师总结。

(3)学生看书。

四、巩固练习,强化知识

做练习五的第1题。

五、课堂作业

(1)当5 60≈6000时, 内取得数字可以是( )。

(2)当4 89≈4000时, 内取得数字可以是( )。

(3)求下面各数的近似数(省略最高位后面的尾数)

485≈ 16498≈ 2510≈ 40938≈ 76560≈

板书:

近似数和“四舍五入”法

208≈200 987≈1000

927≈900 892≈900

517≈500 671≈700

439≈400 152≈400

近似数教案10

教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

教学过程:

一、复习

先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

1295356089020114536697010

二、新课

教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。

教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

教师板书:2.9532.95

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

2.9加上进上来的1就是3.0。所以2.9533.0。

教师板书:2.9533.0

教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

教师板书:2.953

教师:谁能做出这题并且说一说应该怎样做?

指名让学生做这题,并且说一说是怎样做的。

根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

教师:那么,上面的'三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。

教师用投影片(或小黑板)出示***如下:

教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

指名让学生发言,在学生发言的基础上教师总结:

1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

三、课堂练习

1.做第106页上半页做一做的第1、2题,学生***做,做完以后,集体订正。

2.做练习二十四的第3题。

教师先提问:精确到十分位是什么意思?(保留一位小数。)

精确到百分位是什么意思?(保留二位小数。)

然后,让学生***做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

四、课堂作业

练习二十四的第1-2题。

近似数教案11

学习目标: 理解精确度和有效数字的意义;准确地按要求求一个数的近似数。

学习重点:近似数、精确度和有效数字的.意义,

学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.

学习过程:

一、自主学习

准确数与近似数:

(1)初一(4)班有42名同学,数42是 数;

(2)每个三角形都有3个内角,数3是 数;

(3)我国的领土面积约为960万平方千米,数960万是 数;

(4)王强的体重是约49千克,数49是 数.

二、合作探究

1、王强的身高为165cm,数165是一个 数,表示王强的身高大于或等于 cm,而小于 cm。

2、长江长约6300千米,是一个 数,表示长江长大于或等于 千米,而小于 千米。

3、按四舍五入法对圆周率 取近似值:

(精确到个位), (精确到0.1,或叫做精确到十分位),

(精确到0.01,或叫做精确到 分位),

(精确到 ,或叫做精确到 ),

(精确到 ,或叫做精确到 ), ………

4、有效数字:从一个数 起,到 止,所有数字都是这个数的有效数字。

5、 3.256精确到 位,有 个有效数字是 ;

5.08精确到 位,有 个有效数字是 ;

6.3080精确到 位,有 个有效数字是 ;

0.0802精确到 位,有 个有效数字是 ;

3.02万精确到 位,有 个有效数字是 ;

1.68×105精确到 位,有 个有效数字是 。

6、 按括号内的要求,用四舍五入法对下列各数取近似数:

(1)0.015 8(精确到0.001) (2)30 435(保留3个有效数字)

(3)1.804(保留2个有效数字) (4)1.804(保留3个有效数字)

三、巩固提高

1、完成课本练习。

2、 用四舍五入法,按括号里的要求对下列各数取近似值:

(1)0.65148 (精确到千分位); 解:0.65148

(2)1.5673 (精确到0.01);

(3)0.03097 (保留三个有效数字);

(4)75460 (保留三个有效数字);

(5)90990 (保留二个有效数字);

(6) 64.8 (精确到个位);

(7) 0.0692 (保留2个有效数字);

(8)399720 (保留3个有效数字)。

2、下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?

(1)32; 解:精确到 位,有 个有效数字,是 ;

(2)17.93; 解:精确到 位,有 个有效数字,是 ;

(3)0.084; 解:精确到 位,有 个有效数字,是 ;

(4)7.250; 解:精确到 位,有 个有效数字,是 ;

(5)1.35×104; 解:精确到 位,有 个有效数字,是 ;

(6)0.45万; 解:精确到 位,有 个有效数字,是 ;

(7)2.004; 解:精确到 位,有 个有效数字,是 ;

(8)3.1416. 解:精确到 位,有 个有效数字,是 。

近似数教案12

教学内容:

义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。

教学目标:

1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。

2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。

3.通过***思考,培养学生认真审题、解题的良好学习习惯。

教学过程:

一、创设情景

1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

出示情境***,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

学生合作交流。

2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?

[设计意***]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境***中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

二、探究新知

1.学生***思考他们说的结果为什么不一样?这一问题。

谈话:观察两位同学说的结果,你能发现什么?

让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。

学生***研究后,再在小组内交流。

谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

2.学生***思考绿毛龟蛋的宽径约是多少?这一问题

学生***思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

[设计意***]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

三、巩固应用

1.黄河的流域面积是75.14万平方千米。(保留一位小数)

2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的`结果是否是一样的?

3.小华的体重保留整数是45千克,他的体重可能是多少千克?

[设计意***]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

四、感悟收获

谈话:今天大家学得愉快吗?你们最大的收获是什么?

(学生自由说说说本课的收获及体验)

课后反思:

教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。

近似数教案13

教学内容

课本73页例1

教学目标

1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。

2、通过旧知迁移新知的方法,让学生掌握知识。

3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重难点

求一个小数的近似数的方法

理解保留小数位数越多,精确的程度越高。

教学过程

一、复习

1、把下面各数省略万位后面的尾数求出它们的近似数。

734562 38460 50074 10274

让一位学生说出求近似数的方法。

2、下面的空格里可以填哪些数字。

32()546≈ 47()03≈

师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数

二、导入新课

1、课件显示例1***。

他们是怎样得出豆豆身高的近似数的?

(1)保留两位小数

师板书:0.984≈0.98 保留两位小数

用什么方法?(四舍五入法)根据学生回答师板书:四舍五入

引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。

(2)保留一位小数

师板书:0.984≈

让学生***完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。

接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。

(3)保留整数。

师板书:0.984≈

学生***完成,集体订正,说出想法。

小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位......

三、巩固练习

1、课本74页做一做。

2、课件显示填空题。

3、课本练习十二第一题。

4、课件显示判断题。

四、总结

这节课你有什么收获?

五、作业

课本练习十二第2、5、6题。

课后反思:

在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精*开始集中了,但是已经占用了上课的.三分钟时间。

求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。

纵观整堂课,发现仍然存在一些有待改进的地方。

1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。

2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。

3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。

上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。

近似数教案14

教学目标

1、了解近似数和有效数字的概念;

2、能按要求取近似数和保留有效数字;

3、体会近似数的意义及在生活中的作用。

教学难点:有效数字概念的理解。

知识重点能按要求取近似数和有效数字

教学准备

学生:收集有关数据;老师:多媒体课件

设置情境引入课题

1、据自己已有的生活经验,观察身边熟悉的事物,收集一些数据(投影演示)

(1)我班有名学生,名男生,女生。

(2)我班教室约为平方米。

(3)我的体重约为公斤,我的身高约为厘米

(4)中国大约有亿人口。

2、在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?

3、与实际接近的数就是我们今天要学的近似数。

小组合作分析问题

1、教师提出问题:生活中哪些地方用到近似数?

学生纷纷举例:

(1)20xx年第一次人口普查表明,我国的人口总数为12.9533亿。

(2)某词典共1234页。

(3)我们年级有97人,买门票需要800元。等

上面的数据,哪些是精确的,哪些是近似的?

2、举例说明生活中哪些数据是精确的,哪些数据是近似的。

探究新知

1、教师引导学生:近似数与准确数的接近程序,可以用精确度来表示。例如,教科书上的约有500人参加会议,500是精确到百位的近似数,它与准确数513的误差为13.

2、按四舍五入法对圆周率取近似数,即完成教科书55页的'填空。

3、通过填空,引出有效数字的概念,强调对于一个近似数,从左边第一个不是0的数字起,到末位数字为止,所有数字都叫这个数的有效数字,举例说明零“是”还是“不是”有效数字,让学生辩别。

巩固练习

1、师生共同完教科书第55页例6

并让学生思考:近似数1.8和1.80一样吗?为什么?可组织学生讨论。

2、讨论后反馈:(1)精确度不同;(2)有效数字不同。

3、做一做:教科书第56页练习,可请四位同学到黑板上板演,并由其他学生点评。

4、补充例题:据中国统计信息网公布的20xx年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请按要求分别取这个数的近似数,并指出近似的有效数字。

(1)精确到百万位;(2)精确到千万位

(3)精确到亿位;(4)精确到十亿位

课堂小结通过今天的这堂课的学习,你得到了哪些收获

本课作业1、必做题:第57页习题1.5的第6题

2、选做题:用四舍五入法按要求取近似值:

(1)0.20xx(保留两个有效数字)

(2)0.785(精确到百分位)

(3)75436(精确到百位)

课后反思:———————————————————————————————————————————————————————————————————————————

近似数教案15

教学内容:P23例7、做一做,P26练习四第10、11题。

教学目的:

1、使学生学会用“四舍五入”法取商的近似数。

2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

6。03 7。98

2.按“四舍五入”法,将下列各数保留两位小数.

8。785 7。602 4。003 5。897 3。996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

3。 计算0。38*1。14(得数保留两位小数)

二、新课

1.教学例7:

教师出示例6,口述***意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。

教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

2.P23做一做:

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

师:解题时用了什么技巧?

三、巩固练习

1、求下面各题商的近似数:

3.81÷7 32÷42 246。4÷13

2、P26第10题第(1)题。

四、作业:P26第10题第(2)题、第11题。

课后小记:

本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。

其次我根据学情补充介绍了一种求商近似数的'简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

近似数教案16

教学目标:

1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

教学重点:掌握用“四舍五入法”求一个小数的近似数。

教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。

教学过程:

一、复习旧知,情境导入。

1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

先写黑板:12953≈1万

3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?

学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

二、整合情景,探究交流。

1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

谁再来说一遍?(2-3名同学。表扬。)

2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

求得的近似数1.0和1比较,哪一个更精确一些,为什么?

幻灯演示:保留整数为1,原来的`准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

三、练习。(智力闯关。)

同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

1.第一关。保留一位小数。

0.58≈0.63.788≈3.8

精确到百分位。精确到百分位就是保留几位小数?

12.004≈12.001.987≈1.99

保留整数。

9.956≈109.0448≈9

2.第二关。在□里填数。

2.9□≈2.98.5□7≈8.56

3.第三关。

姚明的身高约为2.2米,姚明的身高可能是多少米?

2.15(6、7、8、9)2.155……

2.20(1、2、3、4)2.……

四、全课。

你今天有哪些收获?保留一位小数,就是精确到十分位,……

板书设计

求小数的近似数

12953≈1万0.984≈0.98保留两位小数,看千分位。

小于5,舍去。小于5,舍去

0.984≈1.0保留一位小数,看百分位。

0.984≈1保留整数,看十分位。

大于5,向前一位进1。

近似数教案17

教学目标

知识与技能:使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

能力目标用“四舍五人法”截取积是小数的近似值的一般方法。

情感目标情感态度与价值观:培养学生解决实际问题的能力。

教学重难点

根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

教学过程

一、激发:

1、口算。 0.8×2= 6×0.9= 5×0.5 = 40×0.2= 7×0.8= 25×4 = 300×0.4= 1.5×0.8=

2、用“四舍五人法”求出每个小数的近似数。(投影出示)

保留一位小数保留两位小数保留三位小数

4.51692

328.9604

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五人法”将这些小数保留一位小数或两位小数,取它们的近似值? (2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的'近似值)

二、合作探究

谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、生列式,板书:0.049×45

4、生***计算出结果,指名板演并集体订正。

5、引导学生观察、思考:

(1)积的小数位数这么多!可以根据需要保留一定的小数位数。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?

6、专项练习:

得数保留一位小数0.8×0.9 ≈

得数保留两位小数1.7×0.45≈

三、拓展应用

1、按要求完成下面各题

2、小刚的体重是21.5千克,

他爸爸的体重是他的3.3倍。

小刚的爸爸的体重大约是多少千克?

(得数精确到十分位)

3、两个因数的积保留两位小数的近似数是3.58,准确数可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

四、总结

谁来小结一下今天所学的内容?

五、作业布置

P.13页2题

近似数教案18

一、教学目标

(一)知识与技能

通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。

(二)过程与方法

掌握用“四舍五入”法截取商的近似数的一般方法。

(三)情感态度和价值观

在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。

二、教学重难点

教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。

教学难点:理解求商的近似数与积的近似数的异同。

三、教学准备

多媒体课件。

四、教学过程

(一)复习旧知,揭示课题

1.按照要求写出表中小数的近似数。(PPT课件出示题目。)

2.求出下面各题中积的近似值。(PPT课件出示题目。)

(1)得数保留一位小数:2.83×0.9;

(2)得数保留两位小数:1.07×0.56。

3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)

【设计意***】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。

(二)创设情境,自主探究

1.教学教材第32页例6。

(1)出示例6题目信息。(PPT课件演示。)

(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)

(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)

①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。

②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。

(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?

①学生***完成。

②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)

(5)教师组织学生交流讨论。

①通过上面的两次计算,想一想怎样求商的近似数?

②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)

(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。

①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)

②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)

【设计意***】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。

2.对比求商的近似数与求积的近似数的异同。

(1)对比求“1.07×0.56”的.积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)

(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)

(3)引导学生交流、概括。(PPT课件演示。)

①相同点:都是按“四舍五入”法取近似数。

②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。

【设计意***】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。

(三)巩固应用,内化方法

1.基本练习。

(1)完成教材第32页“做一做”。

①学生***完成,教师巡视,适时指导。

②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。

(2)完成教材第36页练习八第3题。

①学生***练习,教师巡视,适时指导。

②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。

2.提高练习。

判断对错。(对的在括号里打“√”,错的在括号里打“×”。)

(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )

(2)求商的近似数时,精确到百分位,就必须除到万分位。( )

(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )

3.解决问题。

(1)完成教材第36页练习八第2题。

①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)

②学生***计算,教师巡视,了解学生保留不同小数位数的取值情况。

③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。

(2)完成教材第36页练习八第4题。

①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。

②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。

③完成第(2)问:提出其他数学问题并解答。

【设计意***】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。

(四)课堂小结,畅谈收获

这节课你学会了什么?有什么收获?

(五)作业练习,及时巩固

1.课堂作业:教材第36页练习八第1题。

2.课外作业:教材第36页练习八第5题。

近似数教案19

教学目标:

通过准确数与近似数的比较,理解近似数的含义。

初步知道准确数与近似数的区别,会正确辨别准确数与近似数,并会恰当选用近似数。

通过学生的数据收集与交流,能对近似数和准确数互相转化。

体会近似数在生活中的作用,体验数学与生活的密切联系。

教学重点:

理解近似数的含义。

教学难点:

合理地取近似数。

教具准备:铅笔

教学过程:

情境引入

师:今天老师带来了一把铅笔,请同学们猜一猜老师手中的铅笔有几支?

让学生充分地、大胆地猜。师根据学生的回答适时地提示“多得多、少得多、多一些、少一些”,并根据学生的回答在黑板上面板书。

现在老师想请你们猜一猜手中的铅笔是几十支?

根据学生的回答,板书后出示准确的数据。(18支)

现在让你们猜手中的铅笔是几十支,你会怎样说?(学生回答:大约20支)

像这样大概的数就是近似数,今天这节课我们就一起来研究近似数。

交流共享

1. 汇报课前调查各个年级的学生数。

师:老师要求你们课前调查各个年级的学生数,你们做到了吗?来看大屏幕:二年级(1)班有学生50人,那么二年级三个班大约有多少人呢?请你们猜一猜。

学生猜,老师板书后出示准确数,留下接近的数。

师:如果让你们用两句话来说这两个数字,你会怎样说呢?师引导说:二年级有学生154人,大约150人。

师:二年级有154人,那么全校有6个年级大约有多少人呢?

学生猜,老师板书,出示正确的数后留下最接近的数字。

提问:现在我们来观察一下,前面一排的数字和后面一排的数字有什么特点?(前面一排是准确的数,后面一排是大概的数)。

像这样大概的数我们就把它叫做近似数,板书。

教学例9

创设情境:小明是龙岗小学的学生,小华是东山小学的学生,一天他们俩相遇了,都说自己学校的人最多,看大屏幕。

显示:小明:“我是龙岗小学的,我们学校大约有700人”。

小华:“我是东山小学的,我们学校大约也有700人”。

同学们你们知道这两个学校到底哪个学校的`人数多吗?在小组里面说一说。

学生在充分讨论后老师指名回答,只要有道理都要给予肯定。

师:现在我来告诉你们答案吧!教师出示龙岗小学695人,东山小学703人,并引导得出:695人比700人少一些,接近700人,所以说大约有700人;703人比700人多一些,也接近700,所以也可以说大约有700人。我们可以这样用数学的方法表示:

板书:695≈700 703≈700

师边板书边引导学生说:695约等于700,703约等于700.

师问:“≈”这个符号怎么读的?(约等于。)这个符号就叫约等号。

教学“试一试”。

出示:实验小学有学生20xx人,大约是几千人?

让学生充分地猜以后,优化得出20xx大约是2千人,所以写成:20xx≈20xx

反馈检测

1.完成“想想做做”第1题。

先让学生说一说数轴上面的数有什么规律,再让学生***完成。

完成后师问:我们一共填了哪些数,这些数中哪些接近500,哪些接近600?

2.完成“想想做做”第2题。

引导学生读题后强调题目要求:大约是几百或几千元,***完成后集体评价。

3.完成“想想做做”第3题。

***完成后集体评价。

总结:我们在说近似数的时候通常都是约等于几百或几千。

4.完成“想想做做”第4题。

师引导依次讨论三个子问题。

5.完成“想想做做”第5题。

怎样摆接近20xx的数?先摆一摆,再读一读。你知道怎么摆接近9000、5000、1000的四位数吗?

学生***完成,集体评价。

反思总结

提问:这节课我们学习了什么?你有什么收获和体会?

归纳:这节课我们学习了近似数,近似数是一个大概的数。

近似数教案20

教学内容:

课本第77页例8及练习十六第6题。 授课日期 __年__月_ 日 星期

教学目标:

1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。

2、通过***猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。

教学重、难点:

1、通过***猜测、交流等活动让学生掌握一定猜测的方法。

2、培养学生的数感和估计能力。

教学准备:教学挂***。

教学过程:

一、准备练习

1、 接着数数。

1998、( )、( )、( )

9997、( )、( )、 ( )

497、( ) ( ) 、( )

2、按照要求排列下面各数。

1001 996 1008

( ) > ( ) > ( )

205 306 402

( ) < ( ) < ( )

复习旧知,为新知学习作好铺垫。

  二、新课教学

1、组织理解近似数的含义。

出示例8的主题***。

聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?

组织学生进行讨论、交流。思考:后半句约1500人是什么意思?

小组汇报:

A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。

B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。

师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)

引导学生明白近似数更容易记,因为它正好是正百数。

出示例8主题***比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住

(2) 聪聪那天不仅调查了育英小学的`人数,还调查了新长镇的人数是9992人,约是( )人,先***填填,再和你的同桌交流交流。谁来说说你写出的近似数是多少?

个别汇报:

A、约是10000人,因为我觉得9992人接近10000人,

B、我写的是“约9990人”因为9992人和9990只相差2。

同学们你们同意哪位写的呢?为什么?

师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。

通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握近似数的写法。

2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先***想想,再和小组的同学交流。

3、组织活动3——猜一猜。

(1)(练习十六第9题)

提出题中的要求。

请大家***动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。

(2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?

及时肯定回答好的学生,并帮助学生总结应当怎样猜。

让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;

说一说:再互相说一说对方所摆事出的数的组成;

比一比:比较两个数的大小。

通过“说一说、猜一猜”活动让学生感受到近似数与生活的联系。

三、课外训练

1、组织数学游戏——猜价格/

(1)电视节目“幸运52”猜商品价格的游戏大家看过吗?

其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。

(2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。

(3)进行第一轮猜数游戏。

此活动培养学生的思维能力和数感。

近似数教案

转载请注明出处我优求知网 » 近似数教案

学习

面对挑战的作文(精选)

阅读(27)

本文为您介绍面对挑战的作文(精选),内容包括面对挑战作文,以挑战为话题的作文600字,那一次挑战作文500字。在学习、工作或生活中,大家都不可避免地要接触到作文吧,写作文是培养人们的观察力、联想力、想象力、思考力和记忆力的重要手段。一

学习

中国古代经典座右铭

阅读(25)

本文为您介绍中国古代经典座右铭,内容包括古人座右铭简短霸气十足,古代医生的座右铭,古代搞笑座右铭。在现实生活或工作学习中,大家总免不了要接触或使用座右铭吧,座右铭本指古人写出来放在座位右边的格言,后泛指人们激励、警戒自己,作为

学习

银行存款营销活动方案(通用)

阅读(23)

本文为您介绍银行存款营销活动方案(通用),内容包括银行存款营销活动方案范文,银行存款营销成功案例,银行存款营销话术大全。一、活动方案简介活动方案指的是为某一次活动所指定的书面计划,具体行动实施办法细则,步骤等。对具体将要进行的活

学习

房屋抵顶合同(通用)

阅读(24)

本文为您介绍房屋抵顶合同(通用),内容包括抵顶房屋合同应注意的事项,房屋抵顶协议书模板,房屋顶账合同正规范本。现今社会公众的法律意识不断增强,合同在生活中的使用越来越广泛,合同是对双方的保障又是一种约束。那么一份详细的合同要怎么

学习

飞行员面试自我介绍范文

阅读(27)

本文为您介绍飞行员面试自我介绍范文,内容包括飞行员面试自我介绍,南航飞行员招飞面试,民航飞行员面试一分钟自我介绍。来到一个陌生的地方时,时常需要我们进行一个自我介绍,自我介绍是认识自我的手段。千万不能认为自我介绍随便应付就可

学习

降温了的说说(精选)

阅读(27)

本文为您介绍降温了的说说(精选),内容包括降温了的说说朋友圈,降温了的说说心情短语,降温了的说说搞笑。一、说说相关介绍

学习

多层房屋出租合同书(通用)

阅读(28)

本文为您介绍多层房屋出租合同书(通用),内容包括简单楼房出租合同怎么写,整栋房屋出租合同怎样写,简单明了的房子出租合同书。随着法律知识的普及,合同出现的次数越来越多,签订合同能够较为有效的约束违约行为。那么问题来了,到底应如何拟定

学习

《近似数》教学反思(精选)

阅读(22)

本文为您介绍《近似数》教学反思(精选),内容包括七年级近似数教学反思,积的近似数教学反思5篇,准确数与近似数教学反思。在社会一步步向前发展的今天,教学是我们的任务之一,反思过去,是为了以后。反思要怎么写呢?以下是精心整理的《近似数》教

学习

反电诈宣传总结范文(精选)

阅读(24)

本文为您介绍反电诈宣传总结范文(精选),内容包括反电诈工作半年总结,反电诈总结类汇报材料,银行反电诈宣传总结。总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,通过它可以全面地、系统地了解以往的学习和

学习

科技创新少年事迹材料(精选)

阅读(29)

本文为您介绍科技创新少年事迹材料(精选),内容包括科技创新少年事迹材料范文,科学创新好少年事迹材料,科技创新少年主要事迹简短。无论是在学校还是在社会中,大家都用到过事迹吧,根据范围的不同,事迹可分为集体事迹和个人事迹。什么样的事迹

学习

辅警辞职报告模板(通用)

阅读(29)

本文为您介绍辅警辞职报告模板(通用),内容包括辅警辞职报告模板简短,公安辅警辞职报告,乌鲁木齐辅警辞职。一、什么是辞职辞职即辞去职务,是劳动者向用人单位提出解除劳动合同或劳动关系的行为。辞职一般有三种情形:一是依法立即解除劳动关

学习

2022辅警自我剖析材料(通用)

阅读(25)

本文为您介绍2022辅警自我剖析材料(通用),内容包括2022辅警自我剖析材料模板,辅警纪律作风整顿剖析材料,2022年辅警自我剖析。辅警的工作职责

学习

10元钱的谜团作文(通用)

阅读(25)

在日常学习、工作和生活中,大家都尝试过写作文吧,作文是从内部言语向外部言语的过渡,即从经过压缩的简要的、自己能明白的语言,向开展的、具有规范语法结构的、能为他人所理解的外部语言形式的转化。如何写一篇有思想、有文采的作文呢?下面是

学习

我揭开了小蝌蚪的秘密550字作文(通用)

阅读(27)

本文为您介绍我揭开了小蝌蚪的秘密550字作文(通用),内容包括小蝌蚪的作文50个字,小蝌蚪的秘密,我发现小蝌蚪的秘密作文300字。在学习、工作或生活中,大家都不可避免地会接触到作文吧,作文一定要做到主题集中,围绕同一主题作深入阐述,切忌东拉

学习

钓星星幼儿园教案

阅读(27)

本文为您介绍钓星星幼儿园教案,内容包括幼儿园大班语言钓星星教案教程,大班儿歌钓星星教案,钓星星朗读。作为一名默默奉献的教育工作者,就不得不需要编写教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?下面是整理的钓

学习

《小熊让路》中班教案

阅读(26)

本文为您介绍《小熊让路》中班教案,内容包括小熊让路中班教案及反思,小熊让路教案,小熊让路优质课中班。作为一名老师,常常需要准备教案,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?下面是为大家整理的《小熊让路》中班

学习

丁香结教案(精选)

阅读(24)

本文为您介绍丁香结教案(精选),内容包括丁香结教案设计,丁香结教案完整,丁香结教案ppt课件完整版。一、教案的具体内容一、课题(说明本课名称)

学习

《火山和地震》的教案(精选)

阅读(27)

本文为您介绍《火山和地震》的教案(精选),内容包括多火山地震的岛国教案,火山喷发和地震教案反思,科学教案火山和地震。作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!

学习

散步教案(精选)

阅读(28)

本文为您介绍散步教案(精选),内容包括散步教案设计方案,散步教案免费,散步教案一等奖。一、什么是教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、

学习

《吹泡泡》中班教案

阅读(27)

本文为您介绍《吹泡泡》中班教案,内容包括吹泡泡中班教案语言,吹泡泡中班体育活动教案,中班科学吹泡泡优质课教案。作为一名教职工,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案

学习

小动物做客教案(通用)

阅读(27)

本文为您介绍小动物做客教案(通用),内容包括小动物做客教案大班,小动物做客教案小班数学,小动物做客科学教案。一、教案的简介教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,

学习

冬至手指操教案(精选)

阅读(27)

本文为您介绍冬至手指操教案(精选),内容包括大班冬至手指操完整版,小班冬至手指操教案,小学冬至手指操。作为一名教学工作者,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?下面是帮大家整理的冬至