三角形全等的判定教案通用

三角形全等的判定教案(通用13篇)

作为一位无私奉献的人民教师,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?以下是精心整理的三角形全等的判定教案,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形全等的判定教案 1

课程内容

边边边判定定理

选用教材

人教版数学八年级上册

授课人

xxx

授课章节

第十二章第二节

学 时

1

教学重点

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

教学方法

学生合作探究法、教师讲解结合谈话法等综合教学方法

教学手段

黑板板书教学

课 堂 教 学 设 计

阶段

教学内容

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的.同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作***可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作***画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作***步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作***步骤,最后由教师板书最简易的作***步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

三角形全等的判定教案 2

教学目标

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等。

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何***形,培养学生的识***能力。

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用公理证明两个三角形全等。

教学难点:在较复杂的***形中,找出证明两个三角形全等的条件。

教学用具:直尺、微机

教学方法:自学辅导式

教学过程

1、公理的发现

(1)画***:(投影显示)

教师点拨,学生边学边画***。

(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作。

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一。

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时***形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,***形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的.方法――中点定义;全等三角形的对应边相等;等式性质。

2、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结。

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由***形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如***2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。

(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程。

(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程。投影展示证明过程。

教师强调证明线段相等的几种常见方法。

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a、书面作业P56,6、7

b、上交作业P57B组1

思考题:

板书设计

探究活动

三角形全等的判定教案 3

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线

2、能力目标:

(1)通过尺规作***使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画***做实验,根据三角形全等定义对公理进行验证。(这里用尺规画***法)

公理:有三边对应相等的两个三角形全等。

应用格式: (略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的`,二时***形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全***的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1) 讲解例1。学生分析完成,教师注重完成后的点评。

例1 如***△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1= 只要证什么?

(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

(2)讲解例2(投影例2 )

例2已知:如***AB=DC,AD=BC

求证:∠A=∠C

(1)学生思考、分析、讨论,教师巡视,适当参与讨论。

(2)找学生代表口述证明思路。

思路1:连接BD(如***)

证△ABD≌△CDB(SSS)先得∠A=∠C

思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如***,已知AB=AC,DB=DC

(1)若E、F、G、H分别是各边的中点,求证:EH=FG

(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上写出证明,然后选择投影显示。

证明:(略)

说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

例4 如***,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

求证:AC=2AE.

证明:(略)

学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

5、课堂小结:

(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业:

a、书面作业P70#11、12

b、上交作业P70#14 P71B组3

三角形全等的判定教案 4

一、教学目标

1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、

2、使学生掌握化简一个二次根式成最简二次根式的方法、

3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、

二、教学重点和难点

1、重点:能够把所给的二次根式,化成最简二次根式、

2、难点:正确运用化一个二次根式成为最简二次根式的方法、

三、教学方法

通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法、

四、教学手段

利用投影仪、

五、教学过程

(一)引入新课

提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?

了、这样会给解决实际问题带来方便、

(二)新课

由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:

1、被开方数的因数是整数,因式是整式、

2、被开方数中不含能开得尽方的因数或因式、

例1?指出下列根式中的最简二次根式,并说明为什么、

分析:

说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、

例2?把下列各式化成最简二次根式:

说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、

例3?把下列各式化简成最简二次根式:

说明:

1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的'性质把它写成分式的形式,然后利用分母有理化化简、

2.要提问学生

问题,通过这个小题使学生明确如何使用化简中的条件、

通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、

注意:

①化简时,一般需要把被开方数分解因数或分解因式、

②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、

(三)小结

1、满足什么条件的根式是最简二次根式、

2、把一个二次根式化成最简二次根式的主要方法、

(四)练习

1、指出下列各式中的最简二次根式:

2、把下列各式化成最简二次根式:

六、作业

教材P、187习题11、4;A组1;B组1、

七、板书设计

三角形全等的判定教案 5

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养同学的识***能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发同学热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养同学勇于创新,多方位审视问题的创造技巧。

教学重点:

全等三角形的性质。

教学难点:

找全等三角形的对应边、对应角

教学用具:

直尺、微机

教学方法:

自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般同学都能发现这两个三角形是完全重合的。

(2)同学自己动手

画一个三角形:边长为4cm,5cm,7cm,然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让同学用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由同学观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1)投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的***形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的.AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求同学***思考后回答,其它同学补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)

4、课堂***练习,巩固提高

此练习,主要加强同学的识***能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让同学自由表述,其它同学补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

三角形全等的判定教案 6

教材分析

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作***几部分内容相互联系紧密,尤其是尺规作***中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画***、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。

设计理念:

针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到***形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。

教学的重点和难点

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

师:请同学们先***思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。(引出课题)。

师:识别三角形及等的方法有哪些?

生:SAS 、 SSS、 ASA、 AAS 、 HL。

复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

练习2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

(2)添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、如***一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右***的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED

(2)若PB=BC,请找出右***中全等三角形,并给予证明。

用多媒体演示***形的变化过程。

师:***3中AB与ED有怎样的位置关系?同同学们猜想一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从***形运动变化的过程来考虑

生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据同学们的回答,教师板演)

师:若PB=BC,找出右***中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的***形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)

例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该***画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,同学们***思考,然后请几个同学们在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上***作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此***,然后量出EF、FD的.长度,看看EF与FD长度

关系如何?

生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

同学们先***思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何***形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题

教学反思

本教学设计从以下三方面考虑:

1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。

2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。

三角形全等的判定教案 7

教材内容分析:

本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等***形和抽象的几何***形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称***形提供了必要的理论基础。

全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。

教学目标:

1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识***能力;

3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重难点及突破:

重点:全等三角形的概练和性质;

难点:能在全等变换中准确找到对应角、对应边。

教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。

教学准备:

1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。

教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。

教学过程设计:

一、创设情境,引入新课。

1、与学生谈话,努力走近学生之中。

2、游戏情景,引入新课出示课件:大家来找茬游戏

引导:

1、观察两副***形在形状、大小、位置方面的共同点

2、两副***形形状、大小若相同该如何检验?

引导:什么样的***形叫做全等形?

定义:能够完全重合的两个***形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。

二、合作交流,探索新知。

1、手脑并用,感受新知

用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。

2、观察诱导,探究新知。 (1)全等三角形相关概念

引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;

中国人民邮***

能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;

全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。

(2)全等三角形的表达式

引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。

温馨提示:

①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。

引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题

(3)全等三角形性质

引导学生观察并概括全等三角形性质

全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;

∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)

3、合作交流,探究新知(1)手脑并用,体验新知

利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的***形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?

通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的.方式使之重合。

(2)观察交流,探究新知

引导学生观察,交流探索规律。在全等三角形中,一般是:1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;

3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;

引导学生观察,交流发现规律。

针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。

三、合作交流,应用新知。

例:如***,△ABO≌△DCO,指出所有的对应边和对应角。

解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)

∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等)变式:若上***中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。

解:∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)

∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)

四、课堂练习,巩固新知。

(1)如***,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长.

解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)

∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm

(2)如***,已知△ABC≌△ADE,想一想: ∠ BAD= ∠ CAE吗?为什么?

解:相等,

∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE

五、师生互动,小结新知。

学习了这堂课你有哪些收获?并把它与同伴一起分享。

1、全等形的定义:能够完全重合的两个***形,叫做全等形。

2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

3、全等三角形的性质:全等三角形对应边相等,对应角相等。

4、寻找全等三角形的对应边、对应角得规律。 (1)观察***形特点;

(2)观察表达式(对应关系)

六、布置作业。

课本P92习题15.1,第

2、4题。

七、教后感

······

板书设计:

15.1全等三角形

定义:

表示性质:

(学生板书)

三角形全等的判定教案 8

【教学目标】

知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

情感态度与价值观:通过画***、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

教学重点:三角形全等的条件.

教学难点:寻求三角形全等的条件.

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

课前准备:全等三角形纸片、三角板、

【教学过程】:

一、创设情境,导入新课

[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

[生]三内角、三条边、两边一内角、两内角一边.

[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

[生]两种.

1.两边及其夹角.

2.两边及一边的对角.

[师]按照上节方法,我们有两个问题需要探究.

(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB=A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

探究2:先画一个任意△ABC,再画出△A/B/C/,使AB=A/B/、AC=A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

学生活动:

1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

2.作好***后,与同伴交流作***心得,讨论发现什么样的规律.

教师活动:

教师可学生作完***后,由一个学生口述作***方法,教师进行多媒体播放画***过程,再次体会探究全等三角形条件的过程.

二、探究

操作结果展示:

对于探究1:

画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

1.画∠DA/E=∠A;

2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

3.连结B/C/.

将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的'夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

小结:两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

如***,在△ABC和△DEF中,

对于探究2:

学生画出的***形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画***方法:

1.画∠DB/E=∠B;

2.在射线B/D上截取B/A/=BA;

3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的

也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

归纳总结:

“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

三、应用举例

[例]如***,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?

[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

证明:在△ABC和△DEC中

所以△ABC≌△DEC(SAS)

所以AB=DE.

1.填空:

(1)如***3,已知AD‖BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

(2)如***4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

四、练习

1.已知:AD‖BC,AD=CB(***3).

求证:△ADC≌△CBA.

2.已知:AB=AC、AD=AE、∠1=∠2(***4).

求证:△ABD≌△ACE.

五、课堂小结

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出***形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

六、布置作业

必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

七、板书设计

教学反思

本节课的教学过程是:首先,展示教材上的***案以及制作的一些***案,引导学生读***,激发学生兴趣,从***中去发现有形状与大小完全相同的***形。然后教师安排学生自己动手随意去做两个形状与大小相同的***形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式在练习中指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。

此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对***形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

三角形全等的判定教案 9

教学目标:

1了解全等形及全等三角形的的概念;

2 理解全等三角形的性质

3 在***形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,

重点:探究全等三角形的性质

难点:准确的找出两个全等三角形的对应边,对应角

教学过程:观察***案,指出这些***案中中形状与大小相同的***形。

获取概念:全等形、全等三角形、对应边、对应角、对应顶点 。

全等形:形状、大小相同的***形放在一起能够完全重合,能够完全重合的

两个***形叫做全等形。

一个***形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的`***形全等。

全等三角形:能够完全重合的两个三角形叫做全等三角形。

“全等”用?表示,读作“全等于”

注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如△ abc ≌ △def全等时,点a和点d,点b和点e,点c和点f是对应顶点,记作△ abc ≌ △def

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。通过练习得出对应边,对应角间的关系。

即全等三角形性质:全等三角形的对应边相等;

全等三角形的对应角相等。

练习1.2.3.4

小结:形状、大小相同的***形放在一起能够完全重合,能够完全重合的两个***

形叫做全等形。能够完全重合的两个三角形叫做全等三角形。

全等三角形性质:全等三角形的对应边相等;

全等三角形的对应角相等。

表示三角形全等时应注意什么?

三角形全等的判定教案 10

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼***以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等***形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素

教学关键通过拼***、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形***形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师------课件、三角板、一对全等三角形硬纸版 学生------白纸一张硬纸三角形一个

教学过程设计

一、 全等形和全等三角形的概念

(一)导课:教师----(演示课件)庐山风景,以诗"横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中"指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义

象这样的***片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的***形吗?[学生举例,集体评析]

动手操作1---在白纸上任意撕一个***形,观察这个***形和纸上的空心部分的***形有什么关系?你怎么知道的?

[板书:能够完全重合]

命名:给这样的***形起个名称----全等形。[板书:全等形]

刚才大家所举的各种各样的形状大小都相同的***形,放在一起也能够完全重合,这样的***形也都是全等形。

(三)全等三角形的定义

动手操作2---制作一个和自己手里的三角形能够完全重合的三角形。

定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:13.1全等三角形,]

(四)出示学习目标

1. 知道什么是全等形,什么是全等三角形。

2. 能够找出全等三角形的对应元素。

3.会正确表示两个全等三角形。

4.掌握全等三角形的性质。

二、 全等三角形的对应元素及表示

(一)自学课本:91页的 内容(时间5分钟)可以在小组内交流。

(二)检测:

1.动手操作

以课本p91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)

思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

2.全等三角形中的对应元素

(以黑板上的***形为例,***一、***二、三学生***找,集体交流)

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)--- 重合的角

***一(平移)

***二 (翻折)***三(旋转)

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的'边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

3.用符号表示全等三角形

抽学生表示***一、***二、三的全等三角形。

4.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

请写出平移、翻折后两个全等三角形中相等的角,相等的边。

三、 课堂训练

1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。

2.将△abc沿直线bc平移,得到△def(如***)

(1) 线段ab、de是对应线段,有什么关系?线段ac和df呢?

(2) 线段be和cf有什么关系?为什么?

(3)若∠a=50?,∠b=30?,你知道其他各角的度数吗?为什么?

3.议一议:△abe≌△acd,ab与ac,ad与ae是对应边,∠a=40?,∠b=30?,求∠adc的大小。

四、小结:学生填写《课堂学习评价卡》并交流。

五、作业:课本92页习题13.1第2题、3题、4题。

板书设计:全等三角形对应元素

全等形全等三角形全等三角形性质

三角形全等的判定教案 11

全等三角形教案

1.只给定一个角时:

2.给出的两个条件可能是:一边一内角、两内角、两边.

可以发现按这些条件画出的三角形都不能保证一定全等.

五、课堂小结

我们有五种判定三角形全等的方法:

1.全等三角形的定义

2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)

六、布置作业

必做题:课本P44页习题12.2中的第6,选做题:第11题

七、板书设计

课 题 :12.2.4三角形全等的判定《4》

【教学目标】:

知识与技能:直角三角形全等的条件:“斜边、直角边”.

过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.

情感态度与价值观:通过画***、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神

教学重点:运用直角三角形全等的条件解决一些实际问题。

教学难点:熟练运用直角三角形全等的.条件解决一些实际问题。

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “HL”.学生一定能理解。

课前准备 全等三角形纸片、三角板、

【教学过程】:

一、提出问题,复习旧知

1、判定两个三角形全等的方法: 、 、 、

2、如***,Rt△ABC中,直角边是 、 ,斜边是

3、如***,AB⊥BE于C,DE⊥BE于E,

(1)若∠A=∠D,AB=DE,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(2)若∠A=∠D,BC=EF,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(3)若AB=DE,BC=EF,

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

(4)若AB=DE,BC=EF,AC=DF

则△ABC与△DEF (填“全等”或“不全等” )

根据 (用简写法)

二 、创设情境,导入新课

如***,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)

(1)你能帮他想个办法吗?

(2)如果他只带了一个卷尺,能完成这个任务吗?

(1)[生]能有两种方法.

第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.

第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.

可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.

[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?

三、探究

做一做:

已知线段AB=5c,BC=4c和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?

(学生自主完成后,与同伴交流作***心得,然后由一名同学口述作***方法.老师做多媒体演示,激发学习兴趣).

作法:

第一步:作∠MCN=90°.

第二步:在射线CM上截取CB=4c.

第三步:以B为圆心,5c为半径画弧交射线CN于点A.

第四步:连结AB.

就可以得到所想要的Rt△ABC.(如下***所示)

将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.

可以验证,对一般的直角三角形也有这样的规律.

探究结果总结:

斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).

[师]你能用几种方法说明两个直角三角形全等呢?

[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.

[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.

四、例题:

[例1]如***,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.

分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了.

证明:∵AC⊥BC,BD⊥AD

∴∠D=∠C=90°

在Rt△ABC和Rt△BAD中

∴Rt△ABC≌Rt△BAD(HL)

∴BC=AD.

[例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?

[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.

证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°

∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL)

∴∠ABC=∠DEF

即两滑梯的倾斜角∠ABC与∠DFE互余.

五、课时小结

至此,我们有六种判定三角形全等的方法:

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

6.HL(仅用在直角三角形中)

六、布置作业

必做题: 课本P44页习题12.2中的第7,8,选做题:12,13题

七、板书设计

三角形全等的判定教案 12

教学目标

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与***形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

[重点]

探究全等三角形的性质

[难点]

能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。

教学流程安排

活动1 利用电脑投影观察***形,探究得出全等***形的概念

活动2 观察平移、翻折、旋转的两个***形

活动3 全等形的练习

活动4 观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。

活动5探究全等三角形的性质

(课件演示)

活动6全等三角形性质的运用

活动7小结,布置作业

观察、发现生活中***形的形状和大小相同的***形获得全等形的`体验。

利用两个形状和大小相同的***形通过平移、翻折、旋转的实验,得出全等形的概念。

巩固全等性的概念

利用两个形状和大小相同的三角形通过平移

及自己动手作比较得出全等形三角形的概念。

通过***形的变换,形成对应的概念,获得全等形三角形的性质。

运用全等三角形性质解决问题

回顾反思,进一步理解和掌握全等三角形的概念及全等三角形的性质

教学过程设计

问题与情景

师生行为

设计意***

活动1

(1)观察下列***案(电脑显示不同的***案及教科书的***案),学生指出这些***案的形状和大小是否相同?

(2)你能再举出生活中的一些实际例子吗?

(3)按照教科书的要求,将一块三角形样板在纸板上,画下***形,照***形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?

教师演示课件,提出问题,学生思考、交流。

学生思考发表见解。

学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。

教师给出全等形的概念。

教师提出要求,学生动手操作,并做观察、回答问题。

三角形全等的判定教案 13

一、教学内容分析

本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析

学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、***形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索***形全等的活动,通过拼***、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想

我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了***形全等的概念及特征,掌握了全等***形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标

1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。

五、教学重点和难点

重点:三角形全等条件的.探索过程和三角形全等的“边边边”条件。

难点:三角形全等条件的探索中的分类思想的渗透。

六、教学过程设计

具体设计的教学过程描述如下:

(一)创设情境,提出问题

1.出示多媒体:

大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?

[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。

[设计意***]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。

(二)探索发现,合作交流

1.一个条件

按照三角形“边、角”元素进行分类,师生共同归纳得出:

一个条件: 一边,一角;

再按以上分类顺序动脑、动手操作验证。

2.验证过程可采取以下方式:

画一画:按照下面给出的一个条件各画出一个三角形。

①三角形的一条边长是8cm;

②三角形的一个角为 60°。

剪一剪:把所画的三角形分别剪下来。

比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

对只给一个条件画三角形,画出的三角形一定全等吗?

同组同学互相比较,观察得出结果。小组代表说明本小组的结论。

再结合展示幻灯片。以便强化结论。

教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。

3.二个条件

继续探索二个条件的情况,师生共同归纳得出:

两个条件: 二边,一边一角,二角;

[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。

[设计意***]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。

4.画一画:按照下面给出的两个条件各画出一个三角形。

①三角形的两条边分别是:8cm,10cm;

②三角形一条边为7cm,一个角为 30°;

③三角形的两个角分别是:30°,50°。

剪一剪:把所画的三角形分别剪下来。

比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。

[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。

[教师活动]在此教师给学生留出充分的时间画***、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。

5.学生展示本小组的结论

[设计意***]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。

[知识链接]这一知识点既是对后续归纳总结起到实验性证明。

6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。

[设计意***]从实践操作中,引发总结,将前面画***的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。

7. 继续探索三个条件的情况,师生共同归纳得出:

三个条件: 三边,两边一角,一边两角,三角

再继续探索三个条件中的三条边的情况。

8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。

(对画***有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)

剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。

比一比:作出的三角形与其他同学作的比一比,是否全等。

9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。

[学情预设] 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。

[设计意***]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。

(三)、归纳结论,解决问题

1.从上面的活动中,我们总结出:

三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

学生由理解上升到口述出原理,以便以后更好的运用到实践中去。

[学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。

2.成功的解决了上面提出的玻璃问题。

我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。

(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)

[设计意***]学以致用,发现问题解决问题。

转载请注明出处我优求知网 » 三角形全等的判定教案通用

学习

森林防火汇报发言稿精选

阅读(26)

本文为您介绍森林防火汇报发言稿精选,内容包括做好森林防火工作汇报发言,森林防火简短表态发言稿,森林防火交流发言材料。在当今社会生活中,接触并使用发言稿的人越来越多,发言稿在写作上具有一定的格式要求。为了让您在写发言稿时更加简

学习

银行合规工作心得精选

阅读(35)

本文为您介绍银行合规工作心得精选,内容包括银行合规工作心得体会,银行合规心得体会感悟,银行合规工作经验及亮点。当我们心中积累了不少感想和见解时,就十分有必须要写一篇心得体会,这样有利于我们不断提升自我。那么心得体会到底应该怎

学习

抽奖活动方案精选

阅读(32)

本文为您介绍抽奖活动方案精选,内容包括抽奖活动方案大全,直播抽奖活动方案,抽奖活动方案范文。一、活动方案活动方案指的是为某一次活动所指定的书面计划,具体行动实施办法细则,步骤等。对具体将要进行的活动进行书面的计划,对每个步骤的

学习

启蒙运动教学反思

阅读(28)

本文为您介绍启蒙运动教学反思,内容包括启蒙运动的教学互动设计,启蒙运动的教学目标,启蒙运动教学设计。随着社会一步步向前发展,我们需要很强的教学能力,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。那么你有了解

学习

开学亮点工作总结精选

阅读(33)

本文为您介绍开学亮点工作总结精选,内容包括开学工作亮点汇报,开学工作亮点与特色,开学工作亮点汇报美篇。时间一晃而过,一段时间的工作活动告一段落了,回顾这段时间的工作,一定有许多的艰难困苦,这时候,最关键的工作总结怎么能落下!为了让您

学习

简短的家委会表态发言稿精选

阅读(26)

本文为您介绍简短的家委会表态发言稿精选,内容包括家委会表态简短一句话,家委会表态简短句,家委会表态发言简短。一、发言稿的定义发言稿是参加会议者为了在会议或重要活动上表达自己意见、看法或汇报思想工作情况而事先准备好的文稿。

学习

中国思想史读书笔记

阅读(29)

本文为您介绍中国思想史读书笔记,内容包括中国思想史读书笔记1000字,中国思想史读书笔记范文,中国思想史每章读书笔记。当仔细品读一部作品后,大家一定都收获不少,不能光会读哦,写一篇读书笔记吧。可是读书笔记怎么写才合适呢?下面是精心整

学习

婚礼现场男方父亲致辞精选

阅读(27)

本文为您介绍婚礼现场男方父亲致辞精选,内容包括婚礼现场男方父亲致辞范本,婚礼现场男方父亲致辞搞笑,婚礼现场女方父亲致辞。婚礼的概述

学习

我爱学习作文精选

阅读(37)

本文为您介绍我爱学习作文精选,内容包括我爱学习作文300字,我爱学习作文30字左右,我的同桌爱学习四年级作文。无论是在学校还是在社会中,大家都写过作文,肯定对各类作文都很熟悉吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题

学习

小小班周计划通用

阅读(25)

本文为您介绍小小班周计划通用,内容包括小小班10月周计划表内容,小小班一周计划怎么写,小小班周计划合集5篇。时间过得太快,让人猝不及防,我们又将续写新的诗篇,展开新的旅程,此时此刻我们需要开始制定一个计划。我们该怎么拟定计划呢?以下是

学习

工会工作汇报发言精选

阅读(33)

本文为您介绍工会工作汇报发言精选,内容包括工会工作内容总结范例6篇,工会工作报告讨论个人发言稿,工会工作汇报ppt模板免费。无论是身处学校还是步入社会,汇报出现的频率越来越高,汇报必须有情况的概述和叙述,最重要的是结果,经验总结也是

学习

我学会了玩魔尺作文400字精选

阅读(35)

本文为您介绍我学会了玩魔尺作文400字精选,内容包括描写魔尺的作文,玩魔尺的作文,魔尺作文400字。在平平淡淡的日常中,大家都写过作文吧,作文是人们以书面形式表情达意的言语活动。相信许多人会觉得作文很难写吧,下面是帮大家整理的我学会

学习

怎么写周工作计划

阅读(30)

本文为您介绍怎么写周工作计划,内容包括怎么写周工作计划表,周工作计划怎么写,销售周工作计划表。时间过得可真快,从来都不等人,我们又将续写新的诗篇,展开新的旅程,是时候开始制定工作计划了。做好工作计划可是让你提高工作效率的方法喔!以

学习

新任职干部就职表态讲话稿通用

阅读(28)

本文为您介绍新任职干部就职表态讲话稿通用,内容包括迎接新任职干部表态发言稿,股级干部任职表态讲话稿,就职表态讲话稿7篇范文。一、讲话稿的注意事项

学习

初中历史教案大全

阅读(23)

本文为您介绍初中历史教案大全,内容包括初中历史最新教案模板,初中历史教案怎么写,人教版初中历史教案。历史,简称“史”,指对人类社会过去的事件和活动,以及对这些事件行为有系统的记录、研究和诠释。历史是客观存在的,无论文学家们如何书

学习

感统训练教案通用

阅读(27)

本文为您介绍感统训练教案通用,内容包括感统训练教案模板,感统训练教案0-3,感统训练教案大全。一、什么是感统在人类遗传基因中,都有感觉统合的基本能力,每个宝宝生下来,就拥有此能力,但是这种本能必须在婴幼儿时期和环境的互动中,在大脑中身

学习

秋天的雨课件创作思想教案精选

阅读(28)

本文为您介绍秋天的雨课件创作思想教案精选,内容包括秋天的雨课件ppt及教案,秋天的雨教案电子版,秋天的雨课件创作思想。作为一名为他人授业解惑的教育工作者,通常需要用到课件来辅助教学,课件在整个教学活动中占有关键作用,备课的成果表现

学习

语文写作教案

阅读(34)

本文为您介绍语文写作教案,内容包括语文写作教案大全,语文写作教案设计,语文写作教案模板范文。作为一名教职工,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?下面是为大家收集的

学习

初二物理《光的反射》教案精选

阅读(33)

本文为您介绍初二物理《光的反射》教案精选,内容包括光的反射教案设计,有关初二物理光的教案5篇,初二物理光的色散教案。作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,编写教案有利于我们科学、合理地支配课堂时间。那么大家

学习

春天社会领域教案精选

阅读(34)

本文为您介绍春天社会领域教案精选,内容包括社会领域春天优秀教案,社会领域关于春天的活动教案,寻找春天社会领域教案。一、教案的特点

学习

汉语拼音gkh教案精选

阅读(31)

本文为您介绍汉语拼音gkh教案精选,内容包括gkh汉语拼音教案,汉语拼音gkh教学并组词,一年级汉语拼音gkh朗读。作为一位杰出的老师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。快来参考教案是怎么写的吧!以下是为大

学习

幼儿园小班科学课教案《认识圆形》含反思精选

阅读(32)

本文为您介绍幼儿园小班科学课教案《认识圆形》含反思精选,内容包括幼儿园小班上公开课认识圆形教案,找圆形小班教案,幼儿园小班教案认识圆形含反思。作为一名教职工,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。那么你